

Southeast Regional Carbon Sequestration Partnership (SECARB)

The Mississippi Test Site

Field Test Location

Escatawpa, Mississippi

Amount and Sources of CO₂

3,020 Tons (short) of Natural CO₂ (donation)

Primary Contacts

DOE/NETL Project Manager

Mr. Bruce Brown bruce.brown@doe.netl.gov

Principal Investigator

Mr. Kenneth J. Nemeth Southern States Energy Board (SSEB) nemeth@sseb.org

Field Test Principal

Mr. Richard Rhudy Electric Power Research Institute (EPRI) rrhudy@epri.com

Southern Company Site Contact

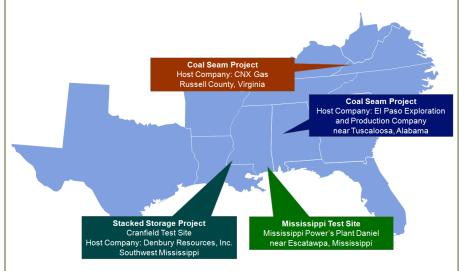
Mr. Richard Esposito
Southern Company
raesposi@southernco.com

Field Test Partners

Primary Sponsors

DOE/NETL SSEB

Industrial Partners


Advanced Resources International Denbury Resources, Incorporated Duke Energy Tennessee Valley Authority

Summary of Field Test Site and Operations

The Southeast Regional Carbon Sequestration Partnership's (SECARB) Saline Reservoir Field Test was conducted at Mississippi Power Company's Plant Daniel, a power generation facility capable of delivering over 1,000 megawatts of coal-fired electricity into the Jackson County power grid. Situated near the town of Escatawpa, the power plant property covers about 1,600 acres of surface area in southeast Mississippi (Figure 1).

One injection well and one observation well was drilled, to depths exceeding 9,500 feet, to access the Massive Sand Unit of the Lower Tuscaloosa Formation for a carbon dioxide (CO₂) pilot injection study. A Class 5 Underground Injection Control (UIC) permit was issued from the Mississippi Department of Environmental Quality (MDEQ) for the injection well, which met Class 1 non-hazardous well standards.

The observation well was drilled first to provide site-specific subsurface data from coring, geophysical well logging, and vertical seismic profiling. The data were analyzed to confirm the viability of the test site to safely inject and store CO₂. A robust monitoring, verification and accounting (MVA) program was implemented for environmental safety and to monitor the movement of the injected CO₂ in the target formation. Monitoring protocols included soil flux, tracers, groundwater quality, geophysical logging and seismic profiling. Extensive outreach and education was performed at each phase of site activities.

SECARB Phase II Geographic Region and Field Test Site Locations

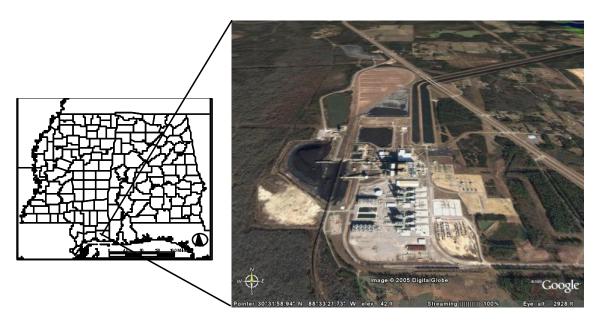


Figure 1. Plant Daniel Location Map

Research Objectives

The purpose of this project is to identify and validate that deep saline reservoirs located near large coal-fired power plants along the Mississippi Gulf Coast can be used for safe geological storage of CO₂. In the Gulf Coast region, the Lower Tuscaloosa Massive Sand Unit has been identified as a promising, high capacity CO₂ storage reservoir that could serve this purpose.

Using a small-scale CO_2 injection test, the project team has built an initial foundation of knowledge based on experience and science that will help assure safe, secure, and publicly accepted geologic storage along the Gulf Coast. Test activities leading to this assurance included: (1) constructing geological and reservoir maps to assess secure CO_2 storage in the subsurface; (2) conducting reservoir simulations to estimate CO_2 injection rate, storage capacity, and the long-term fate of injected CO_2 ; (3) addressing state/local regulatory issues for permitting CO_2 injection; (4) fostering public education and outreach to build public confidence and acceptance; (5) safely injecting over 3,000 tons of CO_2 ; and (6) conducting longer-term monitoring to establish the location and security of the CO_2 plume.

Summary of Modeling and Monitoring, Verification and Accounting Efforts

Time-lapse vertical seismic profile (VSP) surveys and pulsed-neutron logging were used in an attempt to determine the distribution of CO_2 in the subsurface, but results were somewhat inconclusive. However, numerous surface monitoring methods were deployed to ensure safety and the storage integrity of the Massive Sand Unit. These methods included: (1) comparison of post-injection soil CO_2 flux measurements to pre-injection baseline and background fluxes; (2) tagging the CO_2 with perfluorocarbon (PFT) tracers and monitoring for their presence at the surface; and (3) using wellhead and down hole pressure measurement to ensure well integrity. A listing of MVA protocols is shown in Table 1.

Table 1. MVA Techniques Deployed at the Mississippi Test Site.

Measurement Technique	Measurement Parameters	Application
Introduced tracers	 Travel time Identification sources of CO₂ 	Tracing leakage
Water composition	 CO₂, HCO₃, CO₃²⁻ Major ions Trace elements Salinity 	Detecting leakage into shallow groundwater aquifers
Subsurface pressure	Formation pressureAnnulus pressure	 Control of formation pressure below fracture gradient Wellbore and injection tubing condition
Well logs	 Brine salinity Sonic velocity CO₂ saturation 	 Tracking CO₂ movement in and above storage formation Tracking migration of brine into shallow aquifers Calibrating seismic velocities for 3D seismic surveys
Vertical seismic profiling	P and S wave velocityReflection horizonsSeismic amplitude attenuation	 Detecting detailed distribution of CO₂ in the storage formation Detection leakage through faults and fractures
CO ₂ land surface flux monitoring	 CO₂ fluxes between the land surface and atmosphere atmosphere 	Detect, locate and quantify CO ₂ releases

Accomplishments to Date

To date, the project has completed all site activities. Key accomplishments include:

- Developed a plan to conduct the sequestration experiment on the grounds of the Plant Daniel Electric Generating Facility, approved in April 2006 by Mississippi Power Company.
- Participated in a Mississippi Power sponsored "neighbor meeting" to discuss the project and inform the public. The technical team participated in the interactive discussion with the public, using various visual aids (posters, rock samples, etc.) to convey our message.
- A Class 5 UIC injection well permit application was prepared and submitted to the Mississippi Department of Environmental Quality (MDEQ) An injection permit application was not submitted for the observation well.
- In August, 2007, MDEQ held a public meeting to complete the regulatory requirements for the Class V
 Experimental Well Application. No additional questions were received by the MDEQ and the injection permit was issued.
- Baseline soil flux and groundwater monitoring was initiated in September 2007 prior to CO₂ injection.
- Drilling permits for the planned injection and observation wells were submitted and issued by the Mississippi
 Oil and Gas Board. The injection well drilling permit entailed a thorough technical application; the observation
 well drilling permit required only an application for an administrative permit.
- In February 2008 drilling of the monitoring and injection wells was initiated. Both wells were successfully
 drilled, cased, and cemented by early April. The injection well was constructed to Class I non-hazardous well
 standards requested by the MDEQ
- Geophysical logs, cores, and fluid samples were collected and analyzed to characterize the reservoir.
- A baseline VSP survey was conducted in late April 2008 and post-injection VSP was conducted in December

- 2008 for the purpose of monitoring the size and shape of the CO₂ plume.
- Approximately 3,020 tons of CO₂ were injected into the Lower Tuscaloosa Massive Sand Unit in October of 2008.
- Following CO₂ injection, the injection well was certified as fit for continued use via mechanical integrity testing and both wells were relinquished to the site host. The well pad was re-graded and seeded, completing site restoration activities.
- Surface and subsurface monitoring tasks have been completed.
- Final have been completed, documenting lessons learned, project and model results, and site closure activities.

Target Sink Storage Opportunities and Benefits to the Region

The target formation for the SECARB Phase II project is the Massive Sandstone Unit of the Lower Tuscaloosa Formation, a Cretaceous age sandstone saline reservoir. The Tuscaloosa Massive Sandstone occurs throughout the entire subsurface distribution of the Gulf of Mexico Coastal Plain from western Florida to Texas (where it is defined as the time-equivalent Woodbine Formation). A type stratigraphic column of the Gulf Coast Region is shown in Figure 2. The Lower Tuscaloosa contains an upper section of alternating shale and sand and a basal section, the Massive Sand Unit, which contains a thick package of clean, medium to coarse-grained predominantly guartz sand. The Formation was deposited during a major period of global sea-level rise and its deposition has been interpreted as an upward

System	Series	Stratigraphic Unit	Sub-Units	Hydrology			
Mocene		Pascagoula Fm.					
	Misc. Miocene Units	Hattiesburg Fm.	Freshwater Aquifers				
	ne	Offics	Catahoula Fm.	Aquilers			
l	္က 🖳	Vicksburg		Saline Reservoir			
er e	Oligo cene		Red Bluff Fm.	Minor confining unit			
igo Eocene Ene Eocene	Jackson		Saline Reservoir				
	Claiborne		Saline Reservoir				
	ne	Wil∞x		Saline Reservoir			
	Paleo cene	Midwa y Shale		Confining unit			
			Navarro Fm.	Confining unit			
	Selma Chalk	Taylor Fm.	Comming unit				
_	Upper Cre	F. 4	Austin Fm.	Confining unit			
Cre		Eutaw	Eagle Ford Fm.	Saline Reservoir			
oer Cretaceous	Tusca loo sa	Upper Tusc.	Minor Reservoir				
	Group	Marine Tusc.	Confining unit				
s		0.0up	Lower Tusc.	Saline Reservoir			
	<u>ا</u>	Washita	Dantzler Fm.	Saline Reservoir			
Lower	Fre drick sburg	"Limestone Unit"					

Figure 2. Type Stratigraphic Column of the Gulf Coast Region

gradation from fluvial and sedimentation (the Massive Sand) to marine shelf deposition (alternating sand and shale).

The target formation is representative of the geology that could be used to store 50 percent of the CO₂ produced in the SECARB region during the next 100 years.

The Lower Tuscaloosa Formation is a key component of a larger, regional group of similar formations, in terms of deposition and character, called the Gulf Coast Wedge. This wedge of sediments spans the entire region (from the Gulf of Mexico, through Texas, Louisiana, Mississippi, Alabama, Florida, Georgia, South Carolina, North Carolina and Virginia) and includes some of the largest saline sinks (in terms of areal extent and capacity) for the SECARB region as well as the United States.

CO₂ injection tests into the Lower Tuscaloosa Formation will yield confidence in the storage capacity of these other Cretaceous and Tertiary sediments due to the similar lithologic characteristics, analogous depositional environments, proven seals, and moderately complex structural settings exhibited by all of the six Mesozoic and Cenozoic formations in the region.

The CO_2 storage capacity of the SECARB region has been recently assessed using conservative methodology set forth by the Geological Working Group's subcommittee on storage capacity. Annual stationary point-source emissions of CO_2 have been estimated to be 1,047 Mt (MIT 2007). Using this range of reported capacity, the Gulf Coast Wedge has the capacity to accommodate these emissions for 300 to 1,200 years, should one hundred percent of this CO_2 in the region need to be captured and stored.

Cost	Field Project Key Dates								
Total Field Project Cost: \$6,755,246	Baseline Completed: 12/2007 Drilling Operations Completed: 04/2008								
DOE Share: \$5,121,233 75.8%	Injection Operations Completed: 10/2008								
Non-DOE Share: <u>\$1,634,013</u> <u>24.2%</u>									

Field Test Schedule and Milestones (Gantt Chart):

	FY2006			FY2007			FY2008			FY2009				FY2010						
Tasks	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
3.1 Project Definition																				
3.2 Design																				
3.3 Implementation																				
3.4 Operations																				
3.5 Closeout/Reporting																				

This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory under DE-FC26-04NT42590.