recarbon.org

SECARB)

Southeast Regional Carbon Sequestration Partnership (SECARB)

Phase III Anthropogenic CO2 Injection Field Test

Field Test Location and Amount/Sources of CO₂

Anthropogenic Test

- Alabama Power's Plant Barry
 - 100,000 to 150,000 tonnes of CO₂ per year
 - Coal-Fired Power Plant (Commercial/Anthropogenic Source)

Primary Contacts

DOE/NETL Project Manager Mr. Bruce Brown bruce.brown@doe.netl.gov

Principal Investigator Mr. Kenneth J. Nemeth Southern States Energy Board nemeth@sseb.org

Field Test Partners

Primary Sponsors

U.S. Department of Energy National Energy Technology Laboratory Southern States Energy Board

Industrial Partners

(in alphabetical order) Advanced Resources International Alabama Power Denbury Resources, Inc. Electric Power Research Institute Geological Survey of Alabama Southern Company Southern Natural Gas

About SECARB

SECARB is one of seven Regional Carbon Sequestration Partnerships (RCSP) established by the U.S. Department of Energy (DOE) in 2003. The seven partnerships form a national network of more than 400 organizations covering 43 states and four Canadian provinces. The SECARB program spans 13 states in the southeastern United States and is funded by DOE and cost-sharing partners.

Summary of Field Test Site and Operations

Past work by Southeast Regional Carbon Sequestration Partnership's (SECARB) has identified that a series of thick, regionally extensive saline formations with high-quality seals exist within the Gulf Coastal Region. These saline formations have the potential to hold large volumes of carbon dioxide (CO₂). One such formation, the Cretaceous-age Paluxy Formation sandstone, is the target for the SECARB Anthropogenic CO₂ storage test, **Figure 1**.

The Anthropogenic CO_2 storage field test is being performed in southwest Alabama near the town of Citronelle in northern Mobile County. The CO_2 source for the test is a newly constructed post-combustion CO_2 capture facility at Alabama Power's existing 2,657 MW Barry Electric Generating Plant (Plant Barry). A small amount of flue gas from Plant Barry (equivalent to the amount produced when generating 25 MW of electricity) will be diverted from the plant and captured using a process developed by Mitsubishi Heavy Industries to produce highly pure CO_2 . Plant Barry is a coal- and natural gas-fired electrical generation facility located in Bucks, Mobile County, Alabama, **Figure 2**. (Alabama Power is a subsidiary of Southern Company.)

The CO₂ storage site is located within the Citronelle Dome geologic structure. The Citronelle Dome, which provides secure four-way closure free of faults or fracture zones, is located approximately 15 kilometers west of Plant Barry. A pipeline was constructed in 2011 to link the CO₂ capture system with the Paluxy Formation, a major reservoir containing saline water (i.e. water that is too deep and salty to serve as a drinking water supply). The Paluxy occurs at a depth of 3,000 to 3,400 meters. The Paluxy is overlain by multiple geologic confining units that serve as vertical flow barriers and will prevent CO₂ from escaping from the storage reservoir, **Figure 1**.

Three new wells will be drilled during the test; a reservoir characterization well, an observation/backup injection well, and a dedicated CO_2 injection well. The characterization well, the first deep well drilled at Citronelle since the 1980's, was completed in January 2011 (**Figure 3**). Modern characterization data were collected on the injection zone, confining zones and the oil reservoir. The primary injection well was drilled in December 2011 and the backup injector was drilled in January 2012. In addition to the new wells, the project will utilize several existing idle oilfield wells surrounding the CO_2 injection site to monitor injection operations and to ensure public safety.

Beginning in 2012, between 100,000 and 150,000 metric tons per year of CO_2 captured from the pilot facility at Plant Barry will be transported to the storage site. CO_2 injection will continue for a period of two to three years.

During the injection period, multiple CO_2 monitoring technologies will be deployed to track the CO_2 plume, to measure the pressure front, to understand CO_2 trapping mechanisms of the Paluxy saline formation, and to monitor for potential leakage. Three years of post-injection monitoring are planned. Site closure is expected to occur in 2017. The wells will either be plugged and abandoned per state regulations or repermitted for CO_2 -enhanced oil recovery operations in a deeper mineral formation.

_					
System	Series	Stratigraphic Unit	Major Sub Units		Potential Reservoirs and Confining Zones
Tertiary	Pio- Piocene		Citronelle Formation		Freshwater Aquifer
	Miscone	Undifferentiated			Freshwater Aquifer
	Oligocene	Vicksburg Group	Chicasawhay Fm. Bucatunna Clay		Base of USDW
		Jackson Group			Minor Saline Reservoir
	Econ	Claiborne Group	Ta	alahatta Fm.	Saline Reservoir
	re Paio	Wilcox Group	Hatchetigbee Sand Bashi Marl Salt Mountain LS		Saline Reservoir
	ocene	15.1			
		Midway Group	Porters Creek Clay		Confining Unit
	Upper	Selma Group			Confining Unit
0		Eutaw Formation			Minor Saline Reservoir
Cretaceous		Tuscaloosa Group	Upper Tunc.		Minor Saline Reservoir
8			in the	Marine Shale	Confining Unit
us			Lower Tust	Pilot Sand Massive sand	Saline Reservoir
	Lower	Washita-	Dantzler sand		Saline Reservoir
		Fredericksburg	Basal Shale		Primary Confining Unit
		Paluxy Formation	"Upper" "Middle" "Lower"		Proposed Injection Zone
Cretaceous		Mooringsport Formation			Confining Unit
eous		Ferry Lake Anhydrite			Confining Unit
		Donovan Sand	Rodessa Fm.	'Upper'	Oil Reservoir
			'Middle'		Minor Saline Reservoir
			'Lower'		Oil Reservoir

Figure 1. Citronelle Dome Stratigraphy.

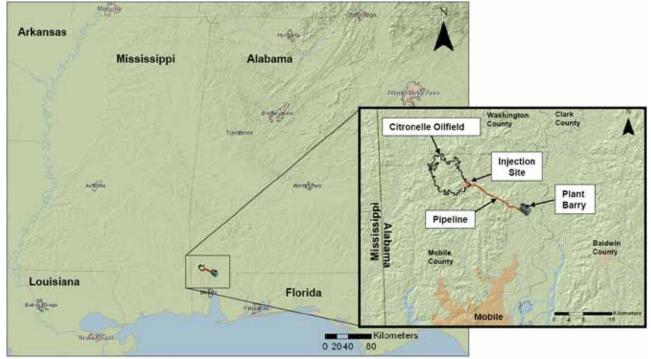


Figure 2. Geographic Location of the SECARB Phase III Anthropogenic Test.

Figure 3. D-9-8#2, Characterization Well Drilling

Research Objectives

The purpose of the SECARB Phase III project is to test and demonstrate safe, secure CO₂ injection and storage in significant, regionally extensive saline reservoirs. Phase III will draw from and build on the Phase II sequestration "lessons learned" and will work to validate sequestration technologies of well design and integrity, monitoring protocols, injection operations as well as regulatory, permitting and outreach. The multi-partner collaborations developed during Phase I and II continued in Phase III.

In the Anthropogenic Test, the R&D objectives are to: 1) test the CO_2 flow, storage and CO_2 trapping mechanisms of the Paluxy Formation; 2) evaluate injection and storage capacity of a major saline reservoir in the Gulf Coast; 3) evaluate the integration of power plant CO_2 capture, transportation, injection and long-term geologic storage; 4) understand how the saline reservoir's internal architecture (the interplay between the reservoir flow units, seals and baffles) can be effectively used to maximize available CO_2 storage capacity and minimize the areal extent of the CO_2 plume; 5) test commercially available, but not yet utilized, "off-the-shelf" and experimental CO_2 monitoring technologies; and 6) evaluate the effect of anthropogenic CO_2 captured from a coal-fired power plant on the geochemistry of a saline reservoir.

3 Southeast Regional Carbon Sequestration Partnership Phase III Anthropogenic CO₂ Injection Field Test

Summary of Monitoring and Modeling, Verification and Accounting (MVA) Efforts

The MVA strategy at the Anthropogenic Test is designed to test commercially available "off-the-shelf" technologies in a manner not utilized before to better understand their performance and future application as listed in the table below.

Measurement Technique	Measurement Parameters	Application
Bottom-hole pressure	Pressure transducers deployed down hole near the injection interval	Key measurement for assessing the reservoir's, injectivity, capacity and pressure field.
Cased-hole logging (pulsed neutron capture)	CO ₂ and water saturations	CO ₂ saturation buildup near new and existing wellbores to monitor for leakage along wellbores and to confirm models.
Time-lapse crosswell and vertical seismic imaging	Change from baseline sonic velocity and amplitude	Distribution of CO ₂ plume vertically and horizontally to monitor for migration out of zone and to confirm reservoir models.
Above-zone pressure and fluid geochemical monitoring	Monitor for changes in pressure and deep saline water geochemistry (i.e., pH, metal concentrations)	Monitoring for CO ₂ buildup above the primary confining unit.
Tracers introduced in the CO ₂ stream	Measure tracer levels around area oilfield wells	Monitor for the presence of tracer buildup near new and existing wellbores which would suggest leakage of vertical CO: along the well annuli.
Drinking water aquifer monitoring	Monitor for changes in a wide suite of parameters (i.e. pH, alkalinity, cations and anions).	Monitoring of area freshwater aquifers for geochemical changes related to shallow CO ₂ leakage.

Table 1. Measurement Technologies to be Deployed at the Anthropogenic Test.

Accomplishments to Date

- A major geologic characterization effort was conducted on the injection reservoir and confining units using existing well and seismic data. Detailed maps of the Paluxy Reservoir sand units and multiple overlying confining units were created.
- The Environmental Impact Statement prepared by the project to fulfill the requirements of the National Environmental Protection Act resulted in a Finding of No Significant Impact.
- The project team has secured minerals and surface rights for the CO₂ storage test.
- The project's first characterization/observation well was drilled in December 2010-January 2011. Data from this well
 will be used to refine the geologic model.
- The Underground Injection Control permit application was submitted to the Alabama Department of Environmental Management for the two injection wells in December 2010. Permits were issued in November 2011.
- In 2011, Denbury completed construction of a 12-mile pipeline to transport the CO₂ from Plant Barry to the injection well in the Citronelle oilfield.
- Injection well drilling began in December 2011, and the observation/backup injection well is being drilled in January 2012.
- Currently finalizing the Test Site risk assessment and evaluating mitigation strategies.

Target Sink Storage Opportunities and Benefits to the Region

Gulf Coast Cretaceous-age formations are key components of a larger, regional group of similar formations, in terms of deposition and character, called the Gulf Coast Wedge. The wedge of sediments spans the entire SECARB region and includes the largest capacity saline sinks in the United States. CO₂ storage capacity estimates for the SECARB Gulf Coast Wedge range from 850-11,700 billion metric gigatons (Gt). In comparison, annual stationary point-source emissions of CO₂ for the region have been estimated to be 1.085 Gt. Using the range of reported CO₂ storage capacities, the saline formations in the Gulf Coast Wedge may have the capacity to accommodate these emissions for over 800 years.

Project Cost and Key Dates

PHAS	E III PROJECT COST	*	KEY PROJECT DATES	
	Dollars	Percent	ANTHROPOGENIC TEST	
DOE Share	\$76,981,260	69.10%	Drilling Operations Begin	12/2010 (characterization well) 12/2011 (injection wells)
Non-DOE Share	\$34,432,171	30.90%	Pre-Injection MVA Begins	8/2011
\$111,413,431Total Value(includes \$2,444,000 for Federal Laboratories)		Injection Operations Begin	3/2012	
			Injection Operations End	2014
*Includes all Tasks for the Phase III Program			Post-injection MVA Ends	2017

This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory under DE-FC26-04NT42590.

Version: January 23, 2012