Understanding of CO₂ migration and entrapment- Cranfield site

Sahar Bakhshian, Prasanna Krishnamurthy, Baole Wen, Pooneh Hosseini

Gulf Coast Carbon Center
Bureau of Economic Geology
Jackson School of Geosciences
The University of Texas at Austin

March, 2019
Assessment of CO$_2$ migration

- Having a Safe and reliable long-term storage of injected CO$_2$
- Ultimate goal: Storage over geologic time

- Our primary concerns:
 - How far will the CO$_2$ plume travel (CO$_2$ footprint)
 - How long does the CO$_2$ plume remain mobile

- Assessment framework ——> Migration mechanisms of CO$_2$
- Prediction of CO$_2$ plume migration path ——> Numerical simulation and experiments
How is CO₂ stored in a saline aquifer?

✓ CO₂ immobilization in the formation through trapping mechanisms during the injection and post-injection period.

- **Structural Trapping**: CO₂ gets physically trapped beneath the sealing caprock and low permeability layers.
- **Residual (capillary) Trapping**: CO₂ gets trapped as immobile isolated residual 'blobs' in the pore space.
- **Solubility (dissolution) Trapping**: CO₂ dissolves into brine.
- **Mineral Trapping**: CO₂ gets mineralised (formation of carbonate minerals).
Reservoir Heterogeneity

- Geological heterogeneity of subsurface reservoirs
- Scales ranging from the pore scale (microns) up to a regional CCS network (hundreds of kilometers).
- Fluvial depositional setting heterogeneity in lower Tuscaloosa formation

Core samples taken from different wells in the Cranfield site (lower Tuscaloosa)
Pore-scale simulation on Tuscaloosa rock samples

- Developed a **pore-scale multiphase flow simulator**
- Tuscaloosa core samples: depth of ~ 10465 ft.
- Using high resolution CT imaging of Tuscaloosa sample
- Study the cases which are unpredictable using experimental approach
- Computationally fast, using **high performance computing** system (parallel computing) at the Texas Advanced Computing Center at the University of Texas at Austin.
CO₂ residual trapping - Pore-scale simulations

- Simulation of CO₂ migration pathway during **injection period**
- Long-term stabilization of CO₂ plume during the early-stage of **post-injection period**
- Effect of **injection rate** and rock mineralogy (**wettability**) on CO₂ migration pattern and its residual trapping

Tuscaloosa sample

Injection period
- CO₂ injection

Brine Flooding
- Brine layer connected CO₂ layer

Post-injection period
- Rock

- Sahar Bakhshian
How Subtle Heterogeneity Helps Increase Trapped Saturations

Subtle changes in grain sizes and capillary entry pressures (<1 kpa) lead to drastic changes in trapped saturations

- Experimental Setup

- Crossbeds with Increasing Capillary Heterogeneity
 - Capillary Pressure Contrast: 107 pa
 - Saturation: 0.45%
 - Trapped Saturation: 0.33%
 - Capillary Pressure Contrast: 360 pa
 - Saturation: 6.33%
 - Trapped Saturation: 5.9%
 - Capillary Pressure Contrast: 760 pa
 - Saturation: 24.8%
 - Trapped Saturation: 23.5%

- Background subtracted: Bright regions Indicate Fluids

- Prasanna Krishnamurthy
1) Solubility trapping can account for 30–40% of the total capacity in long-term storage

2) Convective mass transfer greatly increases the CO₂ dissolution rate and significantly reduces the risk of leakage
Objectives:
- Drive a **mathematical formulation** to predict CO₂ plume extension
- finding a quicker and easier alternative to numerical simulation

Result:
- Very good agreement between mathematical model and numerical simulation (CMG-GEM) results.

Conclusion:
- The CO₂ plume extension depends on the injection rate, CO₂ viscosity, permeability, relative permeability, fluid densities, thickness, and dip angle.

- Hosseininoosheri et al., 2019 (submitted to Scientific Report)
- Corresponding author: poonehhosseini@utexas.edu
Conclusion

- Integrated experimental and numerical simulation approaches can be applied to access long-term fate of CO$_2$ plume during the post-injection period.

- Having knowledge about the trapping mechanisms in subsurface reservoirs can provide insight into the efficiency of CCS operations.
Thank you