
INNOVATIVE WORLDWIDE SOLUTIONS FOR CAPTURE AND USE OF CO₂

SSEB Workshop, Kingsport, TN, 19-20 May 2015 Dr Elizabeth Burton, General Manager – Americas

The Global Status of CCS: 2014

The Global Status of CCS: 2014 – Key Institute publication

The report:

- Provides a comprehensive overview of global and regional developments in large-scale CCS projects, in CCS technologies and in the policy, legal and regulatory environment.
- Introduces and links to project descriptions for around 40 lesser scale 'notable' CCS projects.
- Makes recommendations for decision makers.
- The full report is available online, including supporting resources and data

The Americas Team

- Offices in Washington, DC and Calgary.
- Serving Members in the Americas as well as globally.
- Staff:
 - o Dr Elizabeth Burton, General Manager
 - o Neil Wildgust, Storage
 - o Ron Munson, Capture
 - o Pam Tomski, Policy and Regulatory
 - Diane Teigiser, Media Relations and Communication
 - Meade Harris-Goodwin, Capacity Development/Educational Outreach
 - Dr Victor Der, Senior Adviser (part-time)
 - Ellen Brody, Administrative Manager

Americas activities

- Global/Region-wide
 - Advocating for CCS/CCUS
 - Knowledge-sharing among CCS/CCUS professionals; public education
- United States
 - Facilitating the dialog on CCS/CCUS among policymakers, regulators and our Members.
 - Advocacy and facilitation at the state level: PA and CA
- Canada
 - o Advocacy at the provincial level.
 - Building public support for projects school programs.
- Mexico and other Latin America
 - o Facilitate progress on CCUS roadmap.
 - Capacity development professional and graduate training.
 - Facilitate pilot projects.

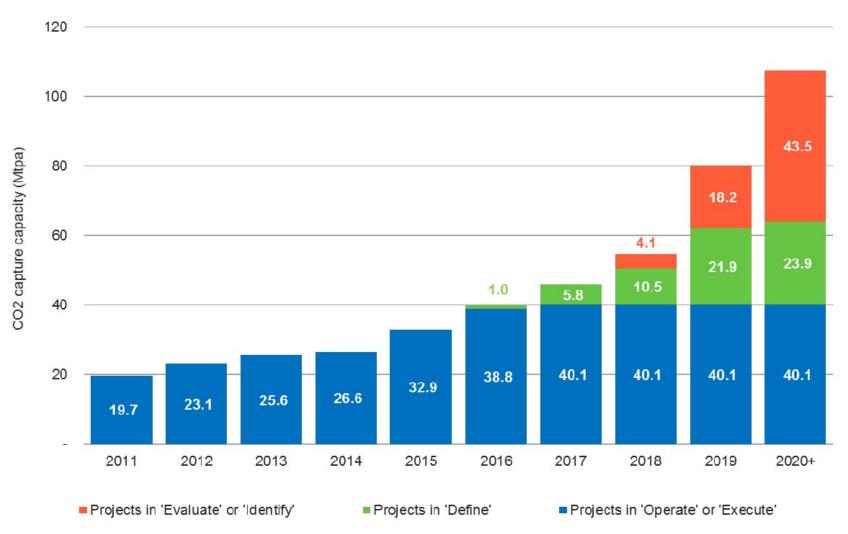
Mitigation cost increases in scenarios with limited availability of technologies

Percentage increase in total discounted mitigation costs (2015-2100) relative to default technology assumptions – median estimate

2100 concentrations (ppm CO ₂ eq)	no CCS	nuclear phase out	limited solar/wind	limited bioenergy
450	138%	7%	6% 8	64%

Symbol legend – fraction of models successful in producing scenarios (numbers indicate number of successful models)

Source: IPCC Fifth Assessment Synthesis Report, November 2014.


Large-scale CCS projects

	Early planning	Advanced planning	Construction	Operation	Total
Americas	5	6	6	10	27
China	7	4	-	-	11
Europe	3	4	-	2	9
Gulf Cooperation Council	-	-	2	-	2
Rest of World	4	-	1	1	6
Total	19	14	9	13	55

Capture capacity by year of operation

By 2050, the CCS "wedge" equates to 150 GT stored

Deployment barriers for CO₂ capture

Energy Penalty

• 20% to 30% less power output

Cost

- Increases Cost of Electricity by 80%
- Adds Capital Cost by \$1,500 \$2,000/KW

Scale-up

- Current Post Combustion capture ~200 TPD
- 550 MWe power plant produces 13,000 TPD

Capture technology progress

Process improvements and scale-up drive down costs

Laboratory/Bench-Scale

- Simulated operating conditions
 - -Short duration tests (hours/days)
 - Proof-of-concept and parametric testing
 - High risk
 - -0.2 to 1,000 scf per minute

up to 0.5 MWe -> TRL: 2-4

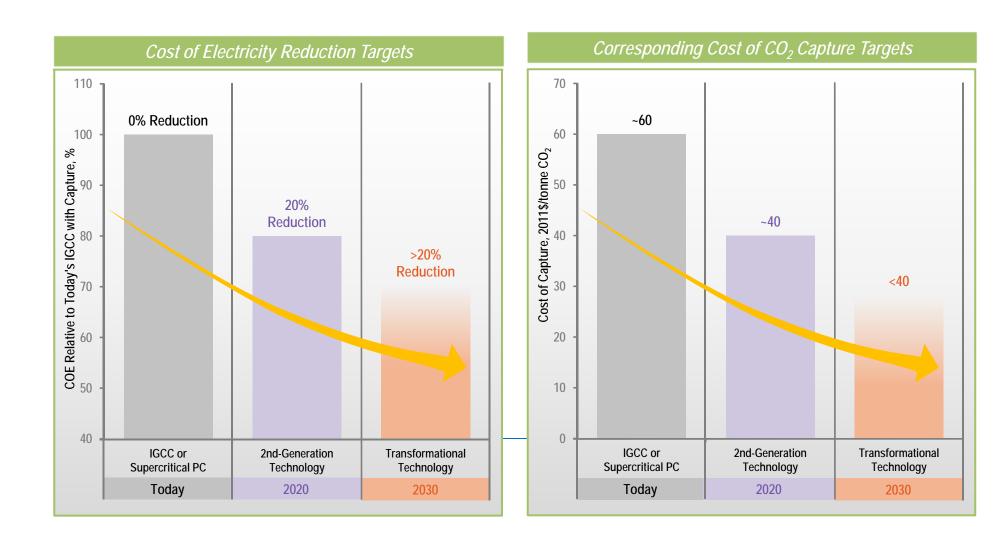
Pilot-Scale Slipstream

- Real operating conditions
 - Longer duration tests (weeks/months)
 - Lower risk
- 5,000 to 100,000 scf per minute

1.0 to 25 MWe -> TRL: 5-7

Demonstration-Scale

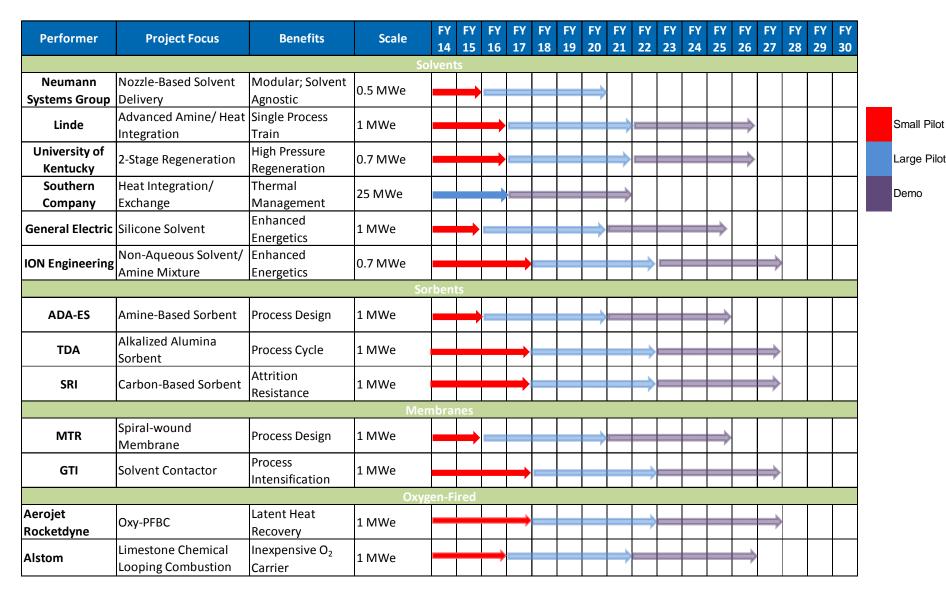
- Variable operating conditions
 - Extended duration (typically years)
- Demonstrate integrated fullscale; Minimal risk commercial application
 CO₂ Utilization/Storage


Project(s) - 50 to 500 MWe -> TRL: 7+

Then >\$100/Tonne

Now ~\$60/Tonne Future <\$40/Tonne

DOE capture cost reduction goals


Shell Cansolv: Boundary Dam amine-based capture system

- Commercial-scale power plant with a fully integrated postcombustion carbon capture system
- 110 MWe coal-fired power production unit
- 90% Capture
- Captured CO₂ is compressed and transported off-site for use in enhanced oil recovery (EOR) operations at a nearby oil field and sent to saline storage (Aquistore)

Current DOE 2nd generation pilot development

Neumann Systems Group

Project Summary

Approach

Design and construct a module of the NeuStream-C absorber technology Colorado Springs Utilities Drake #7 coal-fired power plant.

Advantages

- Significant reduction in absorber capital cost
- Compact, modular and scalable gas/liquid contactor
- Broadly applicable to solvent-based systems
- Novel NO_x control possible

Challenges

Maintaining optimal gas/liquid dispersion in full scale equipment

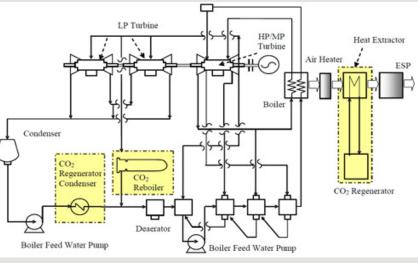
Southern Company Services

Project Summary

Approach

Design, build and install an integrated heat integration system as part of the 25 MWe MHI solvent CO₂ capture system being tested at Southern Company's Plant Barry


Advantages


 Efficient use of traditionally wasted heat in coal-fired flue gas and captured CO₂

Reduced water use and parasitic energy

Challenges

- Control schemes to maintain a proper steam cycle/carbon capture plant heat balance
- Developing specific operating parameters and controls to manage the threat of acid gas condensation

Heat Integration of Power Plant and CCS, Including HES

ADA-ES advanced amine sorbent

Project Summary

Approach

Test ADA-ES's advanced amine-based sorbent technology and process innovations on a 1 MWe slipstream at Southern Company's Plant Miller

Advantages

- High working capacity
- Low heat capacity minimizes heat input needs
- Reactor design (CFB) alleviates pressure drop
- Fundamental sorbent chemistry is well-known
- Components of process equipment are mature
- **Challenges**
- Long-term stability of sorbent
- Ability to control sorbent temperatures and counteract changes resulting from the heat of reaction, potential erosion, and/or corrosion of process equipment

- Pilot designed in "modules"
- Off-site fabrication

Linde and BASF

Project Summary

Approach

Test BASF's advanced amine-based solvent process technology and Linde's novel equipment and process innovations on a 1 MWe slipstream at the National Carbon Capture Center

Advantages

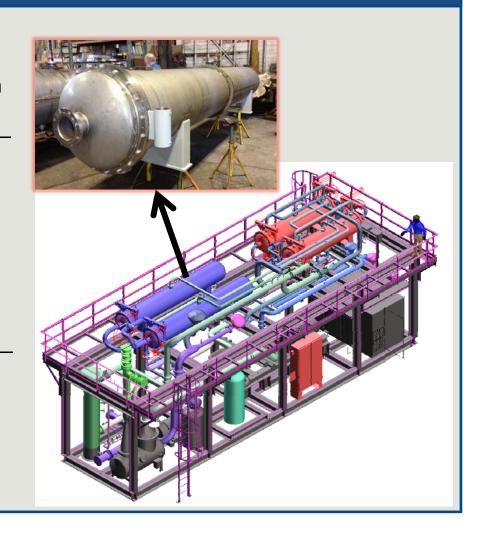
- Solvent more stable, higher capacity, faster kinetics and ~30% lower energy demand than MEA
- Projected up to 60% lower electrical energy load
- Novel intercooler
- Integrated absorber/wash unit
- High pressure regeneration
- Low cost materials of construction (projected ~30% capital savings)

Challenges

 Sustaining performance projections through scale up

Project Summary

Approach


Develop and test a spiral-wound membrane process on a 1 MWe slipstream at the National Carbon Capture Center

Advantages

- Compact equipment
- Smaller footprint
- Efficient scale-up 20-25x larger than current modules
- Capital cost reduction
- Reduced process complexity

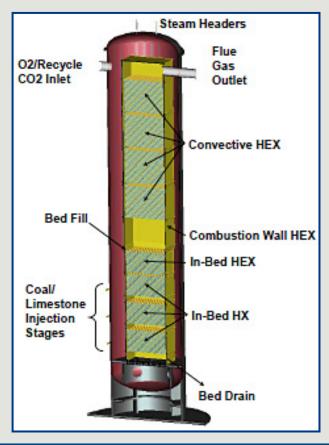
Challenges

- Overcoming sweep side pressure drop
- Effective use of all membrane area
- Maximizing packing density while minimizing pressure drop

AEROJET ROCKETDYNE: Fluidized bed combustion

Project Summary

Approach


Develop and test the pressurized fluidized bed combustion concept and validate associated models with a 1 MWe unit operated at CANMET facilities.

Advantages

- Combines best features of atmospheric CFB and bubbling fluidized bed technologies in smaller package
- Predictable behavior over very wide range of flow rates
- Constant temperatures throughout bed

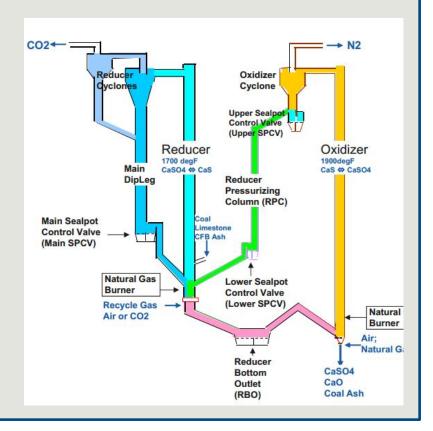
Challenges

- Achieving appropriate reaction rates
- In-bed heat exchange

ALSTOM: Limestone chemical looping

Project Summary

Approach

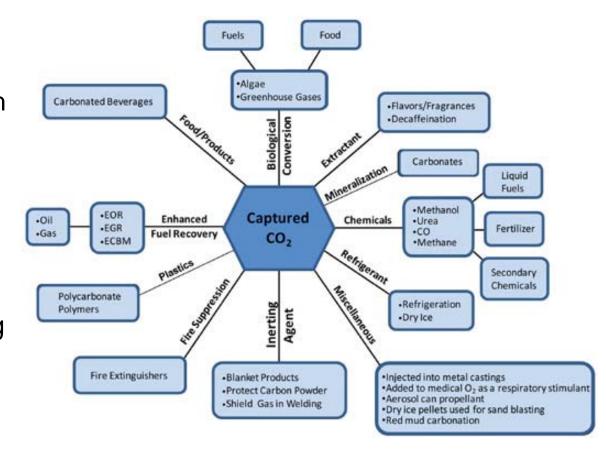

Address technology gaps to improve and optimize the Limestone Chemical Looping Combustion (LCL-C™) process through operation of a 1 MWe prototype system

Advantages

- Air separation unit (ASU) is not required for oxygen production
- CO₂ separation takes place during combustion
- Alternate process configurations for both combustion and gasification
- Low-cost limestone carrier

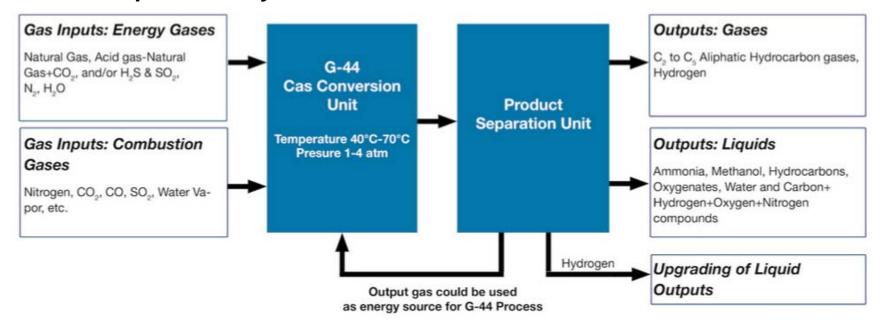
Challenges

- Scale-up
- Solids handling and transport
- Oxygen carrying capacity and reactivity



Utilization Can Change the Outlook for CCS

Putting in the "U" may


- Improve project economics if high revenue, high volume product
- Create local support and positive perceptions
- Create permitting challenges
- Create storage verification challenges

Catalytic Conversion of CO₂ to Fuel/Chemical Precursors

- Multiple approaches under development
 - Precious metal catalysts
 - Innovative catalysts (eg., amorphous p-type chemical semiconductor catalysts)
 - Others
- Some pilot testing completed
- Promising Economics
- Scale-up necessary

CO₂ Utilization - Microalgae

Project Summary

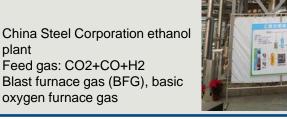
Approach

Pilot-scale testing at multiple sites

- 180 tpd, algae for biofuel at Ratchaburi Power Plant (Thailand)
- 700 tpa, Algal synthesis, Tarong Power Station (Australia)
- 50,000 tpa ethanol, China Steel Corporation (Taiwan)
- 1 tpd Algae Photo-Bioreactor Duke Energy, East Bend Station, Univ. of Kentucky

U of Kentucky pilot-scale photobioreactor tubes

Advantages


- Some modular and scalable
- Value-added products (bio-fuel, chemicals & food products)

Challenges

- Scale-up
- Algae viability/degradation

plant Feed gas: CO2+CO+H2

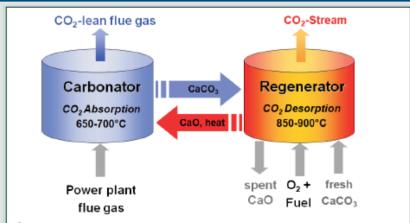
Blast furnace gas (BFG), basic oxygen furnace gas

Calcium looping

Project Summary

Approach

Pilot-scale testing at multiple sites to support scale-up


- 1 MWth at TU Darmstad (GE)
- 200 kWth at University Stuttgart (GE)
- 1.9 MWth at ITRI (Taiwan)

Advantages

- High capture rate (>90%)
- Heat integration opportunities to enhance efficiency of associated power generation facility

Challenges

- Energy requirements
- Solids handling and transport
- Sorbent attrition

- V Calcium Looping is a post-combustion CO₂ capture technology
- V Sorbent utilized is CaO
- Ý CO₂ is captured in carbonator (CaO + CO₂ → CaCO₃)
- \[
 \begin{aligned}
 \cdot CO_2\text{-rich gas is released from regenerator and ready} \]
 for storage (CaCO₃ → CaO + Co₂)

CaO sorbent particles

KEPCO – dry sorbent

Project Summary

Approach

Test KEPCO's carbonate-based sorbent technology and process innovations on a 10 MWe slipstream at KEPCO's Plant Hadong

Advantages

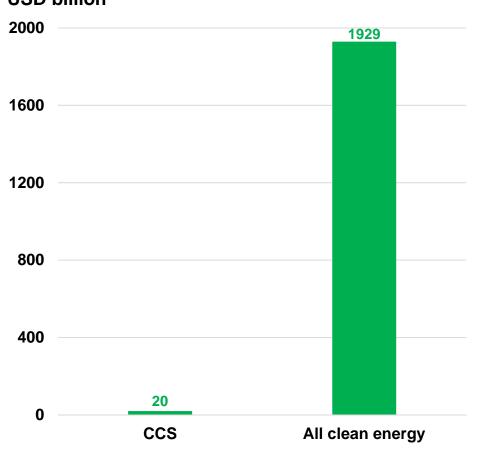
- High sorption capacity
- Minimize influence of water & pollutants
- Good regenerability
- Utilization of waste heat
- Low specific heat capacity

Challenges

- Sorbent attrition
- Presence of liquid water
- · Emergency shutdown

Process schematic of KEPCO dry sorbent process

KEPCO – Hadong Thermal Power Station 10MWe Pilot Plant


Reference: Chong Kul Ryu, KEPCO, CSLF Forum 2014

Strong policy incentives drive investment

- Scale of renewables investment is instructive
- CCUS has not enjoyed commensurate policy support
- EOR has provided impetus in North America
- Policy parity is essential
- How do we get CCUS onto a similar curve?

Data source: Bloomberg New Energy Finance as shown in IEA presentation "Carbon Capture and Storage: Perspectives from the International Energy Agency", presented at National CCS week in Australia, September 2014.

