Cyber-security for Energy Systems

Marija Ilic

MIT IDSS, Visiting Professor* ilic@mit.edu

Governor’ Summit on Energy &Infrastructure, Washington,DC 02/23/17

*CMU Professor milic@andrew.cmu.edu; Director EESG http://www.eesg.ece.cmu.edu/ (on leave):

MIT LL Group 73 Senior Staff marija.ilic@ll.mit.edu
Outline

• Reliable and secure (resilient) energy services.
• Challenges and opportunities.
• Technical challenge—design and implement next generation operating technology (OT) enabled by information technology (IT).
• Proposed approach to making it work.
• Getting there from here.
• Conclusions and recommendations
Hidden IT and physical failures
Could lead to wide-spread blackouts…
Reliable energy services

- **Reliable service**-- Energy system infrastructure in place to survive unplanned physical equipment failures and hidden IT failures and continue serving customers.

- **Resilient (cyber-secure) services**--- Have energy system infrastructure in place to survive targeted, well-planned cyber-attacks on energy system IT.

- **Common problem:** Can not be solved solely by building new hardware. Need for next generation integrated OT/IT.
Challenges and opportunities*

- **Technical challenges**: Design high tech operating technology (OT) and integrate it with information technology (IT) to enable energy services during extreme events (disasters, cyber-attacks).

- **Business challenges**: No legal, political nor economic incentives for investment in OT/IT for secure and reliable energy services.

- **Technical opportunities**: Major innovation, high tech jobs.

- **Business opportunities**: a) for utilities (high tech energy services business at value); b) for vendors (massive development and deployment of OT/IT infrastructures; c) for electric energy users (energy services at value).

Today’s OT/IT in energy systems

- Vertical “seams” within a BA
- Horizontal “seams” between BAs

Observations:
O1: Worst-case-based standards—do not work
O2: Highly inefficient (preventive)
O3: Do not apply local grid small users
O4: No incentives for flexible OT/IT deployment*
(yet functioning IT/OT critical!)

Industry reacting to mandates!
Exhausted, can’t rethink new problems.

* Ilíc, M., Invited testimony on reliability, FERC 2016
*Toward more secure network environment in critical sector, IPRI, MIT Report, 2017, contact<joel@joelbrenner.com>
Recommendations for enhancing OT/IT

• **Rec. 1** Move beyond worst case mandatory standards
• **Rec. 2** Systematic methods for benchmarking
• **Rec. 3** Enhance today’s SCADA
• **Rec. 4** Create a dynamic interactive IT/OT environment
• **Rec. 5** Evolve today’s Balancing Authorities (BAs) into intelligent Balancing Authorities (iBAs)
• R&D under way for such solutions; industry should work closely with academia toward next generation IT/OT
Next generation SCADA-Dynamic Monitoring and Decision Systems (DyMonDS)*

Basics for a working IT/OT:
O1: Multi-directional info flow
O2: Basis for on-line resource management
O3: End-to-end participation in supply/demand/delivery
O4: Possible to set simple specifications for ranges of power and energy characterizing different components
O5: Multi-layered –
 --Detailed information local to components, iBAs
 --Granular (aggregate) information exchange between iBAs
Next generation IT/OT for energy systems (Japan)

① Feedback

- Plant (Hardware)
- Actuator
- Sensor
- Controller (Software)

Feedback System

② Hybrid (CPNS)

- Cyber Network
- Effective Information
- Physical Network
- Proper Action

Networked Control System

③ Hierarchy (SoS)

Interactive iBAs

Cyber Physical Network System

Cyber-security integral part of IT/OT system

- Aggregate variables representing iBAs for interacting with the rest of the system encrypted (by design!); could have IT/OT to dynamically aggregate and exchange information so that attacker never knows how is aggregation done.

- Transparent multi-layered, not too complex. Could have lots of software for computing/and comparing with measurements to detect IT attacks.

- SEEDS project on iBA-based method for detection and protection against cyber attacks in energy systems.
iBA-based method for differentiating between physical and IT failures*

<table>
<thead>
<tr>
<th>Consequence</th>
<th>Cyber</th>
<th>Physical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attack</td>
<td>Cyber</td>
<td>Physical</td>
</tr>
<tr>
<td>Cyber</td>
<td>Acquisition of private information</td>
<td>Replay attack</td>
</tr>
<tr>
<td>Physical</td>
<td>Meter bypassing</td>
<td>Physical equipment destruction/failure</td>
</tr>
</tbody>
</table>

*Ilic, M., Jevtic, A., Aggregation approach to IT/OT for cyber-secure energy systems, IEEE CDC paper 2017 (under preparation)
Recommendations

• Next generation IT/OT systems for secure, reliable, cost-effective and clean energy service needed

• Not sufficient to follow today’s NERC reliability and CIP standards

• Could build on the existing IT/OT by focusing on what must be fixed (O1-O4)

• Probably the most straightforward way is to evolve today’s balancing authorities into intelligent Balancing Authorities (lots of autonomy, could be at States level).

• Naturally lend themselves to dynamic encryption and manageable information processing
Getting there from here...

- Build on the on-going R&D in academia.
- Academia should work closely with industry and government to understand options prior to engaging into expensive and lengthy implementations; industry needs proactive help with next steps.
- Carefully designed simulators for purposes of emulating causes and effects during major disasters and cyber-attacks could help.
- The same simulators should be used to assess potential benefits from the proposed IT/OT solutions.