SOUTHEAST OFFSHORE STORAGE RESOURCE ASSESSMENT (SOSRA)

SOUTH ATLANTIC

08 March 2017

SECARB
12th Annual Stakeholders’ Meeting
Atlanta, GA

James H. Knapp
School of the Earth, Ocean & Environment
University of South Carolina
South Atlantic Team Members

- USC School of the Earth, Ocean, and Environment
 - Prof. James H. Knapp
 - Prof. Venkat Lakshmi
- USC Earth Sciences and Resources Institute
 - Prof. Camelia C. Knapp
 - Dr. Duke Brantley
- South Carolina Geological Survey
 - Dr. Scott Howard
3 Full time PhD students not on project funds; grant had 2 full time PhD students in the budget

Institutional issues affecting invoicing
- staff turnover in Contract and Grant Accounting Office
- introduction of new accounting system

Extensive data conditioning to create a robust 3D Petrel project incorporating all available data into one cohesive project for seismic interpretation, structural modeling and volumetric calculations
Petrel 2-Day Short Course

- Petrel is industry standard for subsurface interpretation
- Held 2-day short course at USC, taught by Schlumberger staff member and USC alum
- Six SOSRA team members were among 25 course participants
Overview

- Project Overview
- Geologic Overview
- Data Summary
- Data Assimilation and Clean-up
- Phase 2 work, SCGS contribution
- Conclusions
Brief Geologic History

- Continental collision between Gondwanan and Laurentian continents in Late Paleozoic
- Rifting and associated magmatism beginning in early Triassic, and continuing through early Jurassic
- Extensive carbonate platform through most of Jurassic and Cretaceous
- Clastic margin through most of Cenozoic
- Storage resource assessment focused on Cretaceous and Cenozoic stratigraphic sections
Major Geologic Features

- Carolina Platform
- Carolina Trough
- Southeast Georgia Embayment
- Blake Plateau Basin
- Cape Fear Arch
- Peninsular Arch
> 200,000 line km 2-D seismic reflection data

6 exploration wells plus COST-GE well

ODP / DSDP / IODP scientific drilling

Seismic refraction data
Much of shelf underlain by 4-6 km section of Paleozoic stratigraphy

Distinct lack of evidence for Mesozoic extensional basins

Implications for subsidence and heat flow during Mesozoic and Cenozoic evolution
Gondwanan Crust

- Entire southeast U.S. offshore underlain by crust of Gondwanan origin (Africa-South America)
- Boundary with former Laurentia (North America) projects offshore between South and Mid-Atlantic planning areas
- Potential for significant changes in geologic history
Significant Phase 1 time and effort dedicated to tying all of the well and seismic data together into one cohesive Petrel geologic project

Effort included but is not limited to:

- Seismic-Well Ties
 - Loading checkshots and QC
 - Sonic calibration
 - Creation of synthetic seismograms

- Amplitude Scaling
- Matching formation tops using well logs
Line name: MME-101_stk

Amplitude = 172

Amplitude = -159

Amplitude = 159

Amplitude = -159
Task 5.0 Volumetric Calculations

- Preliminary CO$_2$ injection simulation modeling
- Studying phase behavior to better understand:
 - Fluid dynamics
 - CO$_2$/carbonate interaction
 - How these change as PVT conditions change
Subtask 8.1 Public Outreach

- Design and Implement Webpage for SOSRA Project with USC Partners
- Story Map detailing project progress and goals
Subtask 8.2 Knowledge Sharing and Technology Transfer

- Design Web Tools to work with project data on web site
- Data visualization and analysis = information to stakeholders
Conclusions

- South Atlantic is a major frontier area despite decades of data acquisition and an earlier phase of hydrocarbon exploration.
- Extensive conditioning of the data seismic-well ties completed.
- Robust geologic project created in Petrel for seismic interpretation, structural modeling and volumetric calculations (Next Steps).
- Preliminary CO₂ injection simulation modeling begun; Phase 2 will incorporate structural model created in Petrel.
- SCGS will build an interactive online storybook for public dissemination of project information.
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.