Current Activities of the DOE Office of Clean Coal & Carbon Management

2017 SSEB Committee on Clean Coal Energy Policies and Technologies

Joseph Giove III
Director of Coal Business Operations
Office of Fossil Energy
May 22, 2017
Office of Fossil Energy

Office of Clean Coal and Carbon Management

Office of Oil and Natural Gas

Strategic Petroleum Reserves

National Energy Technology Laboratory
Advancing Clean Coal Technologies

Making Coal Plants More Efficient
- Gasification, Advanced Turbines, Advanced Combustion, and Fuel Cells

Capturing More CO₂
- Cost-effective carbon capture for new and existing power plants

Turning CO₂ into Valuable Products
- New pathways to utilize captured CO₂

CO₂ Utilization
- Safe use and permanent storage of CO₂ from power generation and industry

Bringing it All Together

Crosscutting technology development program
Pathway for Technology Commercialization

TRL 2 Successes from FWP, SBIR/STTR, ARPA-E

"Valley of Death" for Technologies

Transfer to Office of Major Demonstrations
FE Major Project Demonstrations

- ADM Ethanol Facility
 Decatur, IL

- Kemper CCS Project
 Kemper County MS

- Petra Nova CCS Project
 Thompsons TX

- Air Products Facility
 Port Arthur, TX
Petra Nova – NRG W.A. Parish
Advanced Post Combustion CO2 Capture

- Project at NRG’s W.A. Parish power plant near Houston
- Retrofit of Existing Coal Plant (Post-Combustion CO2 capture) to process flue gas from W.A. Parish unit 8
- World’s largest post-combustion CO2 capture system
- Project was completed On-Budget and On-Schedule
- Delivering and permanently storing around 1.4 million metric tons of CO2 per year for EOR.
- 240 MWe slipstream – scaled-up to improve project economics
- Fuel: PRB sub-bituminous coal
- 90% CO2 capture from supplied flue gas (KM CDR Process®)
- EOR at the Hilcorp West Ranch oil field.
- Total Project Cost: ~$1 billion (DOE Cost Share: $190M)
 - NRG Equity - $300 million
 - JX Nippon Equity – $300 million
 - JBIC Project Financing - $250 million
 - MHI – Technology Provider

Key Dates:
- Project Awarded: May 2010
- Air Permit: December 2012
- NEPA Record of Decision: May 2013
- Financial Close: July 2014
- Complete Construction: December 2016
- Project Construction Completed On-Budget and On-Schedule.
- Started Operations: January 10, 2017
- Project Ribbon cutting: April 13, 2017

U.S. DEPARTMENT OF ENERGY
Fossil Energy
Southern - Kemper County
Advanced IGCC with CO2 Capture

- Mississippi Power’s New Built Coal Plant
- Located In Kemper County, MS
- First Base Load Unit Built in 30 years and Located Away from the Coast after Hurricane Katrina
- Mississippi Power is a PSC Regulated Utility
- Part of Kemper Costs are Subject to PSC Rate Recovery
- Generation: 582 MWe (net) with duct firing
- 2 TRIG™ gasifiers developed by Southern Co. and KBR
- Fuel: Mississippi lignite
- 67+% CO₂ capture (Selexol® process)
- ~3,000,000 metric tons CO₂/year
- EOR: Denbury Onshore LLC
- Total estimated project cost: ~$7B
- DOE Cost Share: $407MM

Key Dates:
- Project Awarded: Jan. 30, 2006
- Project moved to MS: Dec. 5, 2008
- NEPA Record of Decision: Aug. 19, 2010
- Initiate excavation work: Sept. 27, 2010
- CC operation on Nat Gas: August 2014
- First Syngas production initiated: July 14, 2016
- Commercial Operations Expected: 5/30/17
Archer Daniels Midland
CO2 Capture from Biofuel Plant

- CCS project built and operated by Archer Daniels Midland (ADM) at their existing biofuel plant
- located in Decatur, IL
- CO₂ is a direct by-product from production of fuel-grade ethanol via anaerobic fermentation
- Up to 90% CO₂ capture (with >99% CO2 purity), dehydration (via tri-ethylene glycol) & compression
- CO2 Sequestration in Mt. Simon Sandstone deep saline formation.
- Will be the first one to use the new EPA UIC Class VI well permit for CO2 capture.
- ~900,000 tonnes CO₂/year captured and stored
- Total Project Cost: $208 MM.
- DOE Cost Share: $141 MM (68%)

Key Dates:
- FEED Completed: April 2011
- Construction started: May 2011
- Two monitoring wells drilled: Nov. 2012
- UIC Class VI Injection Well Permit: Sept. 2014;
- Injection well drilled and completed: Sept. 2015
- Construction ~99% complete Apr. 2016
- Awaiting final EPA authorization to start CO2 injections using Class VI UIC permit
- Started Operations: April 7, 2017
Air Products & Chemicals
Steam Methane Reforming with CO2 Capture

• Built and operated by Air Products and Chemicals Inc. and located at Valero Oil Refinery in Port Arthur, TX.
• CO2 capture added to 2 existing Steam-Methane Reformers (SMRs) used for Hydrogen Production
• Project achieves 90+% CO2 capture using Vacuum Swing Adsorption (VSA) for CO2 separation
• Capturing ~925,000 tonnes CO2/year
• ~30 MWe cogeneration unit makeup steam to SMRs and power to VSA and Compressors
• CO2 to Denbury “Green” pipeline for EOR in Texas at West Hastings oil field
• Total Project cost: $431 MM;
• DOE Share: $284 MM (66%)
• Project was executed on time and under budget
• Has operated >100% of design when needed

Key Dates:
- FEED Completed: April 2011
- Construction started: May 2011
- Two monitoring wells drilled: Nov. 2012
- UIC Class VI Injection Well Permit: Sept. 2014;
- Injection well drilled and completed: Sept. 2015
- Construction ~99% complete Apr. 2016
- Awaiting final EPA authorization to start CO2 injections using Class VI UIC permit
- Started Operations: April 7, 2017
Rare Earth Elements (REEs)

- REE’s are a family of 17 high-value elements including: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu). The rare earths are also often considered to include the metals scandium (Sc) and yttrium (Y).
Why are REEs Important?

<table>
<thead>
<tr>
<th>Light Rare Earths</th>
<th>Major End-Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scandium</td>
<td>TVs, fluorescent and energy-saving lamps</td>
</tr>
<tr>
<td>Lanthanum</td>
<td>hybrid engines, metal alloys</td>
</tr>
<tr>
<td>Cerium</td>
<td>catalysts, metal alloys</td>
</tr>
<tr>
<td>Praseodymium</td>
<td>Magnets</td>
</tr>
<tr>
<td>Neodymium</td>
<td>catalysts, hard drives in laptops, headphones, hybrid engines</td>
</tr>
<tr>
<td>Promethium</td>
<td>watches, pacemakers</td>
</tr>
<tr>
<td>Samarium</td>
<td>Magnets</td>
</tr>
<tr>
<td>Europium</td>
<td>red color for television, computer screens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heavy Rare Earths</th>
<th>Major End-Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terbium</td>
<td>phosphors, permanent magnets</td>
</tr>
<tr>
<td>Dysprosium</td>
<td>permanent magnets, hybrid engines</td>
</tr>
<tr>
<td>Erbium</td>
<td>phosphors</td>
</tr>
<tr>
<td>Yttrium</td>
<td>red color, fluorescent lamps, ceramics, metal alloy agent</td>
</tr>
<tr>
<td>Holmium</td>
<td>glass coloring, lasers</td>
</tr>
<tr>
<td>Thulium</td>
<td>medical x-ray units</td>
</tr>
<tr>
<td>Lutetium</td>
<td>petroleum catalysts</td>
</tr>
<tr>
<td>Ytterbium</td>
<td>lasers, steel alloys</td>
</tr>
<tr>
<td>Gadolinium</td>
<td>magnets</td>
</tr>
</tbody>
</table>
Why are REEs Important?

• The market for REE has been increasing since they were first mined in the mid-1900s. Historically, the U.S. has had a large market share, being the largest producer of REEs from the 1960s to the 1980s.
• China began production in the 1980s and by 1988 secured the position of the world’s leading REE producer. China has controlled the global market throughout the majority of the last 30 years.
• In 2011, global production of REEs was approximately 132,000 metric tons (MT)—95 percent of which was supplied by China.
• On September 1, 2009, China announced plans to reduce its export quota to 35,000 tons per year in 2010–2015 to conserve scarce resources and protect the environment.
• On October 19, 2010, China Daily, citing an unnamed Ministry of Commerce official, reported that China will "further reduce quotas for rare earth exports by 30 percent at most next year to protect the precious metals from over-exploitation”
• In March 2012, the US, EU, and Japan confronted China at WTO about these export and production restrictions. China responded with claims that the restrictions had environmental protection in mind.
• In August 2012, China announced a further 20% reduction in production.
Key Takeaways

• The strong global interest in developing an additional REE supply creates an investment opportunity for commercial firms seeking REEs recovered from coal and coal byproducts to find competitive entry points into the REE global value chain.

• REEs present in coal-based materials currently being mined for coal production represent potential savings when compared to production of virgin ore in a mine dedicated solely to REE recovery.

• The core challenges with REE recovery from coal and coal byproducts center on the large volume of material that must be processed to recover REEs.
For Additional Information

Office of Fossil Energy
www.energy.gov/fe

twitter.com/fossilenergygov

NETL
www.netl.doe.gov

facebook.com/FossilEnergy