Vision Statement:

An energy independent United States with energy-production-driven prosperity for the State of Tennessee, especially for East Tennessee.
Tasks:

• Encourage Investment
 – Disseminate promising technology information
 – Seek out promising energy companies
 • Existing
 – Inside Tennessee
 – Outside Tennessee
 • Entrepreneurial Start ups
 – Seek out willing venture capitalists
 – Coordinate “business incubators” and other assistance
 – Encourage rapid investment for the most promising energy technologies and enhancements
Tasks:

• Coordinate
 – Government grants
 – Tax incentives
 – State executive agencies
 • Eliminate or reduce interference
 • Streamline permit & application processes
 – State higher education institutions
 • Support studies
 • Institutional assistance and partnering
Traditional Energy Sources

- Petroleum
- Natural gas
- Coal
- Nuclear
Traditional National Energy Sources

- Coal: 44.6%
- Natural Gas: 23.3%
- Nuclear: 20.2%
- Oil: 1.0%
- Renewable and Other: 4.1%
- Hydroelectric: 6.8%

Source: U.S. Energy Information Administration
Traditional Tennessee Energy Sources

Energy Data

Tennessee Electricity Generation Mix

Source: Energy Information Administration
Alternative Energy Sources

• Small Nuclear
• Clean Coal
• Biomass
• Solar
• Wind
• Geothermal
Nuclear

• Large megawatt plants (104 active sites in USA)
 – Very long licensing lead times
 – Extremely capital intensive upfront
 – Long construction lead times

• Vulnerable to grid disruptions

• Current national grid contribution of 20%

• Forecast (required) national grid contribution of 39%

• Waste disposal remains politically contentious
Nuclear – Tennessee

• Large megawatt plants
 – Third Watts Bar unit – ahead of schedule
• Current national grid contribution of 20%
• Current Tennessee grid contribution of 30%
• Oak Ridge National Laboratory
 – Large local employer
 – Premier research facility for nuclear power
 • Trans-Uranic Waste
 • Consortium for Advanced Simulation of Light Water Reactors
Small Nuclear

- Small megawatt plants (intended for municipalities)
 - Proven technology (conceptually similar to nuclear submarine power plants)
 - Capital intensive upfront (lower than traditional large plants)
 - Licensing and construction lead times (long but potentially shorter than traditional large plants)

- Waste disposal remains politically contentious

- Not large-scale grid limited
 - Reduces potential impacts from “rolling blackout,” natural disaster outages and terrorist attack
Clean Coal

• Bergius Process
 – Coal liquefaction (process used by Wehrmacht in WWII)
 – Currently undeveloped and expensive

• Fischer-Tropsch Process
 – Hydrogenation to syngas to gasoline... now in use by Sasol in South Africa (process used by Wehrmacht in WWII)
 – Currently developed and economically expensive but viable

• Karrick Process
 – Carbonization to primarily solid fuel and limited oil amounts
 – Environmentally friendly (production and use)
 – Pilot plant under construction
Clean Coal

• Karrick Process
 – Originally developed in 1920’s
 – Initially used for coal-to-liquid fuel conversion
 – Effective but expensive in this use
 – Modified by Dr. Wolfe in late 1990’s
 – Removes nearly all intrinsic coal pollutants
 – Environmentally closed-loop production process
 – BTU output of carbon end-product nearly equal to input coal
 – Oil by-product
 – Approximately 1 barrel per ton of processed coal
Clean Coal

• Karrick Process Output
 – Carbon end-product nearly pure
 – Combustion source
 – Primary combustion by-products
 – CO₂
 – Water
 – Reduced fly ash
 – Biologically neutral fly ash
 – Steel industry coke source
 – Combined with paper industry by-product (black liquor)
 – Additional heat treatment
 – Stack scrubber substitute for activated charcoal
Biomass

• Corn and Sugar to Ethanol Process
 – Proven technology in current use
 – Competes with food crop production

• Switchgrass to Ethanol Process
 – Large scale pilot production plant in use (Vonore)
 – Uses “weed” that grows well on, otherwise, unproductive crop land
 – Current logistics increase expense

• Algae Direct to Diesel Process
 – Environmentally attractive
 – Not fresh water dependent
 – Current production expenses high
Solar – legislation enabled 2009

• Maximum forecast contribution of 3%-5%
• Manufacturing
• Site availability
 – Annual days of sunshine
• Gas turbine backup expense
 – Acquisition, operation and maintenance
 – Fuel costs variability
• Silicon panel cost/inefficiency/durability
Summary

• Environmental pressures
 • Manageable
 • Publicity required

• Worldwide demand increase
 • Emerging economies – China & India
 • European total dependence on imports

• Essential need
 • National security and economic survival
 • Current planning not properly addressing
 • Near term – Clean coal & increased domestic oil
 • Far term – Combination of nuclear & alternatives