Central Appalachian Basin Unconventional Reservoir Small Scale CO₂ Injection Tests

Coalbed Methane and Shale

Nino Ripepi, Michael Karmis, Ellen Gilliland, Charles Schlosser
Virginia Center for Coal and Energy Research at Virginia Tech

SSEB Annual Stakeholders Briefing
March 8, 2018
Acknowledgments

• Financial assistance for this work was provided by the U.S. Department of Energy through the National Energy Technology Laboratory’s Program under Contract No. DE-FE0006827.
Motivation for Test

- **Carbon Capture, Utilization and Storage (CCUS)**
 - Utilization is key to make the business case make sense for carbon capture

- **Previous funded Tests**
 - Russell County, VA – 1,000 ton test
 - Central Appalachian Geologic Characterization
 - Black Warrior Basin, Alabama

- **Regional need for CO2 Sink in Appalachia focused on Utilization**

- **Coal and Shale**
 - Adsorption of CO2 on the organic surface – safe and secure
 - CO2 can displace unrecovered methane and enhance recovery
 - Infrastructure in place
 - Low pressure
SECARB Phase II
Previous Experience in Huff and Puff Test
in Russell County, Virginia (2009)

Production curve for huff-and-puff test well, Russell County, Virginia, 2009

- 1000-ton CO₂ injection
- Stacked coal reservoir
- Evidence of preferential adsorption: elevated N₂ and CH₄
- Enhanced CH₄ recovery at two offset wells, no CO₂ breakthrough
- EUR of test well has increased by 85 percent
65% of CO2 Retained in Russell County Test
SECARB Phase II – Black Warrior Basin Test

Total Well Production for Permit 12450-C

- Gas (Mcf)
- Oil (bbls)
- Gas Sales (Mcf)
- Water (bbls)
Current Project Overview:
Goals and Objectives

★ Objectives:
 - Inject up to 20,000 metric tons of CO2 into 3 **vertical CBM wells** over a one-year period in Central Appalachia
 - Perform a small (approximately 400-500 metric tons) Huff and Puff test in a **horizontal shale gas well**

★ Goals
 - Test the storage potential of unmineable coal seams and shale reservoirs
 - Learn about adsorption and swelling behaviors (methane vs. CO2)
 - Test the potential for enhanced coalbed methane (ECBM) and enhanced gas (EGR) production and recovery

★ Major tasks:
 - Phase I: site characterization, well coring, injection design
 - Phase II: site preparation, injection operations
 - Phase III: post-injection monitoring, data analysis, reservoir modeling
Research Partners

- Virginia Center for Coal and Energy Research (Virginia Tech)\(^1,2,3,4,5\)
- Marshall Miller & Associates\(^2,3\)
- Gerald Hill, Ph.D.\(^1,4\)
- Southern States Energy Board\(^1,5\)
- Virginia Dept. of Mines, Minerals and Energy\(^3\)
- Geological Survey of Alabama\(^3\)
- Sandia Technologies\(^3\)
- Det Norske Veritas (DNV)\(^4\)
- Consol Energy (Research Group)\(^2,3\)

Industrial Partners
- Consol Energy (CNX Gas)
- Harrison-Wyatt, LLC
- Emory River, LLC
- Dominion Energy
- Alpha Natural Resources
- Flo-CO2; Praxair; Trimeric

Collaborators
- Schlumberger
- Global Geophysical Services
- Oak Ridge National Laboratory
- University of Nottingham / British Geological Survey, University of Tennessee, University of Virginia,
- Southern Illinois University, Oklahoma State University

1 Project management
2 Operations
3 Research
4 Risk management
5 Outreach
Shale CO₂ Injection Test (510 tons)
Morgan County, Tennessee

- Horizontal well in Chattanooga Shale formation, drilled in 2009
- Legacy producing gas well permitted under TDEC
- 510 tons for “huff and puff” injection test
- **Injection period:** March 18-31, 2014 (14 days)
- **Shut-in period:** March 31- July 29, 2014 (~4 months)
- **Flowback period:** July 29, 2014- present (~24 months)
- **Current status:** site closed
Shale CO₂ Injection Test in Morgan County, Tennessee
Operations Overview
Shale CO\textsubscript{2} Injection Test in Morgan County, Tennessee

Operations Overview
Shale CO₂ Injection Test in Morgan County, Tennessee
Flowback Results

- EGR: An increase versus baseline production
- Correlated production of hydrocarbons and CO₂
- 34 percent of injected CO₂ produced to date (173 tons)
Shale CO₂ Injection Test in Morgan County, Tennessee
Results to Date

Production of heavy hydrocarbons elevated from baseline values:
• Role of pressure, viscosity and adsorption/desorption processes
• Enhanced recovery ⇒ implications for other shale plays
50% of CO2 Retained in Morgan County Test
CBM Injection Test Sites
Russell and Buchanan Counties, VA
CO₂ INJECTION TEST IN BUCHANAN CO., VA

- 13,000-ton CO₂ injection
- 15-20 thin, stacked coal seams
- Phase I: 10,601 tons
- Phase II: 2,662 tons
- Flowback: 210 tons
CBM CO₂ Injection Test in Buchanan County, VA

- Oakwood coalbed methane field
- Stacked coal reservoir, 15-20 seams
- Tight shale and sandstone confining units
- Over 13,000 tons CO₂ injected in two distinct Phases injection over 17 months in three legacy wells
- CO₂ storage + Enhanced gas recovery
- US EPA Class II UIC Permit
- Current status: Post-injection monitoring.
CBM CO$_2$ Injection Test in Buchanan County, Virginia
Reservoir Modeling

Stratigraphic cross section through injection wells

Modeling Considerations:
- 15-20 coal seams in injection zone
- Average seam thickness of 1.0 feet
- Depth range: 900-2200 feet
- Variable lateral continuity
- Intermediate and overlying seals
- Dynamic reservoir properties (active production operations)
- Multi-phase flow
Production history for Buchanan County CO$_2$-ECBM test injection wells

Higher production for DD7 \rightarrow enhanced permeability on anticline

Wells shut in for test
CBM CO₂ Injection Test in Buchanan County, Virginia
Reservoir Modeling

CO₂ Injection simulations used to define Area of Review (AOR) for monitoring program

18-layer reservoir model
CBM CO₂ Injection Test in Buchanan County, Virginia
Monitoring, Verification, and Accounting (MVA)

Oakwood Field Demonstration Site

MVA Focus Area
- Injection wells
- CBM production wells
- MVA boundaries
- Roads
- Monitoring and characterization wells
- Microseismic array (28 stns)
- GPS array (20 monuments)
CBM CO$_2$ Injection Test in Buchanan County, Virginia
Monitoring, Verification, and Accounting (MVA)

Oakwood Field Demonstration Site

MVA Focus Area
- Injection wells
- CBM production wells
- MVA boundaries
- Roads
- Monitoring and characterization wells
- Microseismic array (28 stns)
- GPS array (20 monuments)
CBM CO$_2$ Injection Test in Buchanan County, Virginia
Monitoring, Verification, and Accounting (MVA)

Oakwood Field Demonstration Site

MVA Focus Area
- Injection wells
- CBM production wells
- MVA boundaries
- Roads
- Monitoring and characterization wells
- Microseismic array (28 stns)
- GPS array (20 monuments)
CBM CO₂ Injection Test in Buchanan County, Virginia
Monitoring, Verification, and Accounting (MVA)

Oakwood Field Demonstration Site

MVA Focus Area
- Injection wells
- CBM production wells
- MVA boundaries
- Roads
- Monitoring and characterization wells
- Microseismic array (28 stns)
- GPS array (20 monuments)
CBM CO₂ Injection Test in Buchanan County, Virginia
Monitoring, Verification, and Accounting (MVA)

MVA Approach

Borehole-scale technologies:
- Pressure/Temperature
- Gas/H₂O composition
- Tracers/Isotopes
- Formation logging

Technologies deployed over large areal extents:
- Microseismic/TFI
- Surface deformation measurement (GPS + InSAR)

• Combination of technologies will provide data sets with overlapping spatial and temporal scales.
 • Data will help distinguish signals from CO₂ operations vs. active CBM operations
 • Data sets will cross validate each other

• Selected technologies to address/overcome challenges of reservoir geometry and terrain
Continuous, Real-time Monitoring

Monitoring and Characterization Wells

Surface and Downhole Pressure and Temperature Gauges
*(Higher CO2 content in shallow coals and higher ethane content in deeper coals)
Surface Deformation Measurement
Time-lapse GPS Data

- Direct sensing/ground reference
- Stations within and outside AOR
- Survey assembly:
 - 4-ft borehole, 6-in diameter
 - Steel rod secured with cement and rebar
 - CHC X90-OPUS receivers
- Data collection:
 - variable occupation time (hours); accuracy tradeoff
 - Accuracy: mm-scale
Project Timeline
Two Injection Phases

Currently in Post-injection Monitoring
CO₂ INJECTION OPERATIONS

- Injection operations at DD-7
- Coriolis flow meters
- SCADA
 - Continuous monitoring
 - Real-time controls
 - Relay data from monitoring wells
CO₂ INJECTION TEST RESULTS

- Max injection pressure at DD-7A during Phase I and II
- Injection pressure fell and leveled at 100psi during both phases
CO₂ INJECTION TEST RESULTS

- Injectivity decreases in all wells for Phase I and II
 - Levels out before zero

[Graphs showing CO₂ injection test results and injection & flowback temperatures for Phase I and II wells DD7, DD7A, and DD8.]
Start of Injection Phase I: July 2015
End of Injection Phase I: April 2016

CO2 Injection Diagram: Phase I

- Pressure, psia
- Temperature, °F

- Solid
- Liquid
- Vapor

Melting Line
Saturation Line

DD7
DD7A
DD8
Microseismic monitoring

Combined TFI for pre-injection survey
December 20, 2014-January 1, 2015

Combined TFI for early injection survey
June 27-July 16, 2015

• Results for both surveys show generally higher acoustic activity on western margin
CO$_2$ INJECTION TEST RESULTS

- CO$_2$ breakthrough at DD-8A
- 12.9% during Phase I
- 4.65% during Phase II
CO₂ INJECTION TEST – TRACER RESULTS

• Breakthrough of PMCP in DD-7 water prior to injection
• Breakthrough of SF₆ in DD-8A Phase I injection
WATER INJECTION TEST TO DELINEATE CO₂ PLUME MIGRATION

*Not to scale
WATER INJECTION TEST TO DELINEATE CO₂ PLUME MIGRATION

- Coal thickness
- Flow rate
- Production per foot of coal
WATER INJECTION TEST TO DELINEATE CO$_2$ PLUME MIGRATION

- Coal thickness
- Flow rate
- Production per foot of coal
WATER INJECTION TEST TO DELINEATE CO₂ PLUME MIGRATION

- More CO₂ in shallow coals
 - Zone 6 = Seaboard

<table>
<thead>
<tr>
<th>Aspect Ratio</th>
<th>Propane</th>
<th>Ethane</th>
<th>CO₂</th>
<th>Methane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z6</td>
<td>8%</td>
<td>5%</td>
<td>6%</td>
<td>7%</td>
</tr>
<tr>
<td>Z5</td>
<td>7%</td>
<td>6%</td>
<td>5%</td>
<td>8%</td>
</tr>
<tr>
<td>Z4</td>
<td>6%</td>
<td>5%</td>
<td>4%</td>
<td>8%</td>
</tr>
<tr>
<td>Z3</td>
<td>5%</td>
<td>4%</td>
<td>3%</td>
<td>8%</td>
</tr>
<tr>
<td>Z2</td>
<td>4%</td>
<td>3%</td>
<td>2%</td>
<td>8%</td>
</tr>
<tr>
<td>Z1</td>
<td>3%</td>
<td>2%</td>
<td>1%</td>
<td>8%</td>
</tr>
</tbody>
</table>

Legend:
- Propane
- Ethane
- CO₂
- Methane

Graph:
- **Z1:** 100% CO₂
- **Z2:** 70% CO₂, 30% Methane
- **Z3:** 50% CO₂, 50% Methane
- **Z4:** 30% CO₂, 70% Methane
- **Z5:** 20% CO₂, 80% Methane
- **Z6:** 10% CO₂, 90% Methane
INITIAL FLOWBACK RESULTS

- Flowback Commenced on 1/8/2018
- ~80 – 90% CO₂
- 500 tons of CO₂
- Flowrates are up 10-30%
- Significant Propane in the produced gas
Conclusions and Opportunities

• 4 Successful injections
 • SECARB Phase II Pilot Tests
 • 500 tons in Chattanooga Shale
 • Over 13,000 tons of CO2 into 3 CBM wells in Buchanan County, VA

• Local service providers utilized

• Favorable injectivity / high storage capacity

• Potential for demonstration-scale test

• Potential for commercialization = economic development
 • Enhanced gas recovery
 • CO2 based infrastructure
 • Continued support of tax base and jobs
 • Job creation
Commercialization Opportunities