Update on Results of SECARB “Early” Test of Monitoring Large Volume Injection at Cranfield

Mississippi River

Natchez
Mississippi

Illustration by Tip Meckel
Gulf Coast Carbon Center (GCCC)

BEG Team
Susan Hovorka
Tip Meckel
J. P. Nicot
Rebecca Smyth
Ramon Trevino
Katherine Romanak
Changbing Yang
Dave Carr
Sigrid Clift
Jiemin Lu
Seyyed Hosseini
Jong Won Choi
Vanessa Nunez
Khandaker Zahid
Carey King
students
Scott Tinker
Ian Duncan

Collaborators
BEG- CEE
LBNL
LLNL
ORNL
USGS
New Mexico Tech
Mississippi State U
U of Mississippi
BP
ARI
SECARB
SWP
UT-PGE
UT- CCEP
UT- DGS
Univ Edinburgh

NETL: Bruce Brown
SSEB: Jerry Hill

IA sponsors
bp
Chevron
Marathon
Kinder Morgan
ConocoPhillips
ExxonMobil
Luminant
Entergy
EDF
LCRA

New 2011
GE BG group
Early Test Organization Chart

Gulf Coast Carbon Center
Bureau of Economic Geology
Jackson School of Geosciences
The University of Texas at Austin

Federal collaborators
- LBNL
 - Well-based geophysics, U-tube and lab design and fabrication
- LLNL
 - ERT
- USGS
 - Geochemistry

UT DGS
Anchor QEA
Core Laboratory

Environmental Information Volumes
Walden Consulting

Vendors
e.g. equipment

Separately funded groups
- ORNL
 - PFT, Stable isotopes
- NRAP
 - VSP
- NETL
 - Rock-water interaction
 - Stanford, Princeton, U Edinburgh, UT PGE & ICES (CFSES), U. Tennessee, USGS RITE, BP

Denbury Resources
Field owner and injection system design, management, 4-D survey, HS&E

Sandia Technologies
Monitoring Systems Design, Installation, HS&E

50 Vendors
e.g. Schlumberger

MSU, Univ Miss
Hydro & hydrochem
Early Test Workflow and Presentations

Reservoir characterization;
production history;
Existing cores and logs;
Existing aquifer data

2008 Sue

GEM and TOUGH2 models for experiment design

Well construction;
Cross well seismic,
Multi-well hydro tests,
Logging, coring,
Petrography,
petrophysics
Soil gas recon,
Groundwater surveillance

2009 David

Bold=topics discussed

GEM, TOUGH2
Geochemist workbench models for operations

2010 Tom

Time-lapse cross well;
VSP, repeat 3-D,
Groundwater Surveillance, P-site measurements

U-tube geochemistry,
P-site measurements
BHP BHT DTS ERT, RST, Measurement
Groundwater Surveillance

2009-2010 Jiemin

GEM, TOUGH2
Geochemist workbench models for assessment

2011 Seyyed

+ Reservoir characterization; production history; Existing cores and logs; Existing aquifer data
+ GEM and TOUGH2 models for experiment design
+ Well construction; Cross well seismic, Multi-well hydro tests, Logging, coring, Petrography, petrophysics Soil gas recon, Groundwater surveillance
+ Time-lapse cross well; VSP, repeat 3-D, Groundwater Surveillance, P-site measurements
+ U-tube geochemistry, P-site measurements BHP BHT DTS ERT, RST, Measurement Groundwater Surveillance
+ GEM, TOUGH2 Geochemist workbench models for operations
+ Reservoir characterization; production history; Existing cores and logs; Existing aquifer data
+ GEM and TOUGH2 models for experiment design
+ Well construction; Cross well seismic, Multi-well hydro tests, Logging, coring, Petrography, petrophysics Soil gas recon, Groundwater surveillance
+ Time-lapse cross well; VSP, repeat 3-D, Groundwater Surveillance, P-site measurements
+ U-tube geochemistry, P-site measurements BHP BHT DTS ERT, RST, Measurement Groundwater Surveillance
+ GEM, TOUGH2 Geochemist workbench models for operations
+ Reservoir characterization; production history; Existing cores and logs; Existing aquifer data
+ GEM and TOUGH2 models for experiment design
+ Well construction; Cross well seismic, Multi-well hydro tests, Logging, coring, Petrography, petrophysics Soil gas recon, Groundwater surveillance
+ Time-lapse cross well; VSP, repeat 3-D, Groundwater Surveillance, P-site measurements
+ U-tube geochemistry, P-site measurements BHP BHT DTS ERT, RST, Measurement Groundwater Surveillance
+ GEM, TOUGH2 Geochemist workbench models for operations
Source of CO₂ for Early Test

Phase 1
36 MMBbls

Phase 2
31 MMBbls

Phase 3
77 MMBbls

Phase 4
41 MMBbls

Phase 5
82 MMBbls

Phase 6
50 - 90 MMBbls

Phase 7
Seabreeze Complex
30 - 40 MMBbls

Phase 8
Hastings Field
190 - 225 MMcfd of CO₂

Faustina Project

Cranfield

Courtesy of Denbury Resources, Inc.
Regionally significant sequestration target for Early Test: Gulf Coast Wedge

Repetitive depositional units
• Results transferable to:
 • older and younger units
 • other parts of region
Geologic Setting of Early Test Site at Cranfield

Phase II
- Middle Tuscaloosa confining System
- Oil-water contact
- Cross section from 3-D seismic survey
- 3,000 m depth
- Gas cap, oil ring, downdip water leg
- Shut in since 1965
- Strong water drive
- Returned to near initial pressure

Phase III
- Tip Meckel
Geologic Characteristics of Injection Zone

![Diagram showing channel erosion and point bars.](image)

Stratal slicing of 3-D volume
Hongliu Zeng

Galloway 1983

Meander fluvial model
Interim Conclusions of Early Test

- Injection start July 2008
- 2.8 Million metric tons stored
- 1 million metric ton/year rate achieved Dec 2009
- Monitored with standard and novel approaches
 - History match pressure response
 - Above-Zone Monitoring Interval (AZMI)
 - Fluid flow measured/monitored with multiple tools in complex flow field
 - Quantification of dissolution
 - Knowledge sharing, outreach, risk assessment
- Export to commercial EOR/sequestration projects
(1) RCSP Program Goal

Predict storage capacities within +/- 30%

- Capacity and injectivity well known at project start.
- Advance understanding of efficiency of pore-volume occupancy (E factor).
- Measure saturation during multiphase plume evolution (completed).
- Increase predictive capabilities (underway through modeling).
(2) RCSP Program Goal

Evaluate protocols to demonstrate 99% CO$_2$ retained

- Permanence of geologic system well understood prior to test. Assess methods for documenting well performance.
- Measure changes above the injection zone along well, above zone monitoring interval (AZMI), and at surface (P site) over long times (underway).
- Plume confined by 4-way closure. Uncertainty – amount of radial flow (down dip/out of pattern).
- Completed certification framework assessment of leakage risk. Confirmed well performance as highest uncertainty and focus of monitoring research.
Contribute Technical Expertise and Lessons Learned, Development of Best Practices Manuals

- Participated in developing BPMs for MVA, characterization, risk and reservoir modeling
- O&E in public and technical arenas.
- Hosted site visits, responses to local and trade media, Fact Sheets, website postings of project information.
Five Study Areas

- Injector
- Producer (monitoring point)
- Observation Well

Key:
- Structure Contour
- Access roads
- Tuscaloosa Wells

GIS base Tip Meckel

Five Study Areas

- High Volume Injection Test (HiVIT)
- Pipeline head & Separation facility
- Study DAS
- GMT
- Observation Well
- Injector
- Producer (monitoring point)
- Observation Well

GIS base Tip Meckel

Five Study Areas

- High Volume Injection Test (HiVIT)
- Pipeline head & Separation facility
- Study DAS
- GMT
- Observation Well
- Injector
- Producer (monitoring point)
- Observation Well

GIS base Tip Meckel
Early Test MVA Design

<table>
<thead>
<tr>
<th>Area tested</th>
<th>Whole plume</th>
<th>Focus study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmosphere</td>
<td>Not tested</td>
<td>Not tested</td>
</tr>
<tr>
<td>Soil gas</td>
<td>Time-lapse surveys at active and P&A well pads</td>
<td>“P site” methodology assessment</td>
</tr>
<tr>
<td>Groundwater</td>
<td>Monitoring well at each injector</td>
<td>EGL-7 UM cored test well. Push-pull test</td>
</tr>
<tr>
<td>Shallow production</td>
<td>Not tested</td>
<td>Not tested</td>
</tr>
<tr>
<td>AZMI</td>
<td>Not tested</td>
<td>DAS pressure and EGL 7 pressure + fluids</td>
</tr>
<tr>
<td>Geo Mechanical test</td>
<td>Not tested</td>
<td>GMT-failed</td>
</tr>
<tr>
<td>Injection zone</td>
<td>Geochemistry breakthrough</td>
<td>DAS multi-well multi tool array</td>
</tr>
</tbody>
</table>