

Establishing CO₂ Utilization, Storage and Pipeline Systems for the Eastern Gulf of Mexico

Prepared for:

Southeast Offshore Storage Resource Assessment (SOSRA)

U.S. Department of Energy | National Energy Technology Laboratory Project Number: DE-FE0026086

Prepared By:

Vello A. Kuuskraa, President Advanced Resources International, Inc.

Atlanta, GA March 8, 2017

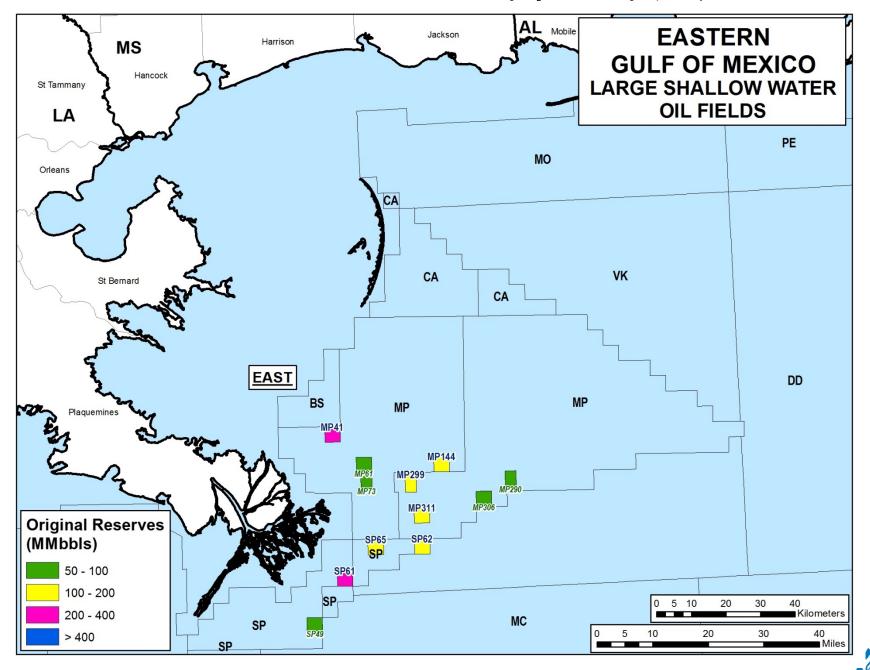
Establishing CO₂ Utilization, Storage and Pipeline Systems for the Eastern Gulf of Mexico

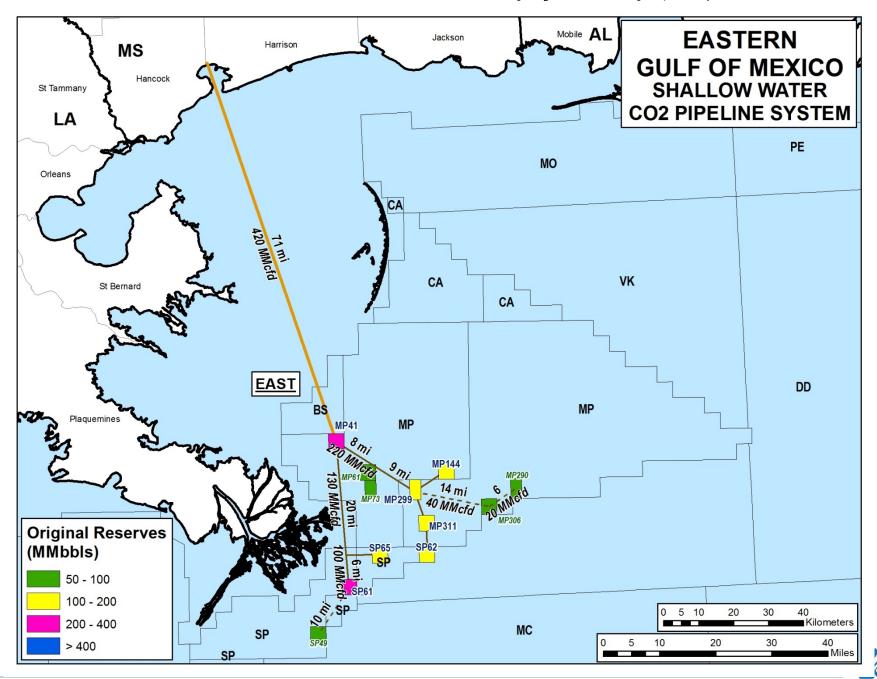
As part of our scope of work, Advanced Resources conducted a pre-feasibility study of the volumes of CO₂ that could be utilized and stored in offshore Eastern Gulf of Mexico Federal waters oil fields as part of CO₂ enhanced oil recovery.

We then used the CO_2 utilization and storage data to establish two CO_2 pipeline systems (one for the shallow water and one for the deep water) in the Eastern Gulf of Mexico that would deliver CO_2 from onshore to oil fields for use by CO_2 -EOR.

- The study established the location of the technically viable oil fields, including the volumes of CO₂ expected use and storage and the oil recovery potential for each oil field.
- A preliminary CO₂ pipeline system was specified and costed for delivering CO₂ to these offshore oil fields.

Eastern GOM Shallow Water CO₂ Pipeline System for Utilization and Storage of CO₂


Pipeline System for Delivering CO₂ to Eastern GOM Shallow Water Oil Fields


We assembled data on the largest 12 shallow water GOM oil fields (each with original oil reserves of 50 million barrels or more) in the Federal waters of the Eastern Gulf of Mexico.

For the initial CO₂ pipeline design, we plotted the location of each of the 12 shallow water oil fields. We then estimated the oil recovery potential and CO₂ injection requirements for each oil field for CO₂ enhanced oil recovery.

Then, we established an offshore pipeline system that would optimally connect these 12 shallow water oil fields with CO₂ supply delivered from an onshore location.

Eastern GOM Shallow Water CO₂ Pipeline System

The Eastern Gulf of Mexico CO_2 pipeline system would deliver 6,110 Bcf of CO_2 (equal to 323 million metric tons of CO_2) for utilization and storage with CO_2 -EOR.

Eastern GOM Shallow Water CO₂ Pipeline System

No. of Fields	CO ₂ -EOR Oil Recovery		CO ₂ ements	CO₂ Flow Requirements				
(#)	(MMB)	(Bcf)	(MMmt)	(MMcfd)	(MMt/yr)			
12	610	6,110	323	420	8.1			

- The flow requirements, over 40 years of operation, are 420 million cubic feet per day, equal to 8.1 million metric tons per year.
- The oil recovery potential from these 12 oil fields using CO₂–EOR is 610 million barrels.

Eastern GOM Shallow Water CO₂ Pipeline **Investment Costs**

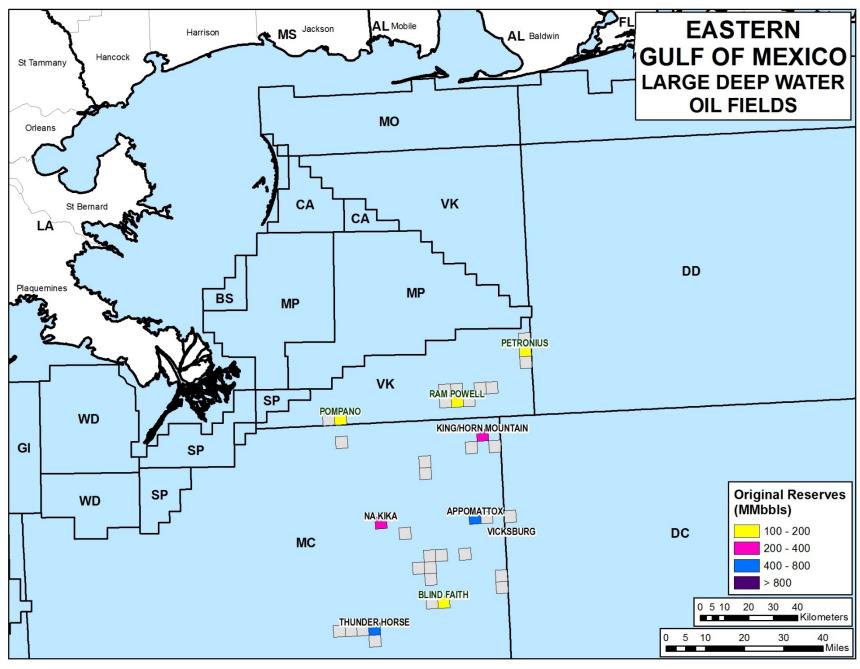
Our prefeasibility estimate of installing the Eastern Shallow Water GOM CO₂ Pipeline System is about \$1.2 billion. This estimate is based on 2,412 inch-miles of pipeline with capital costs of \$500,000 per inch-mile.

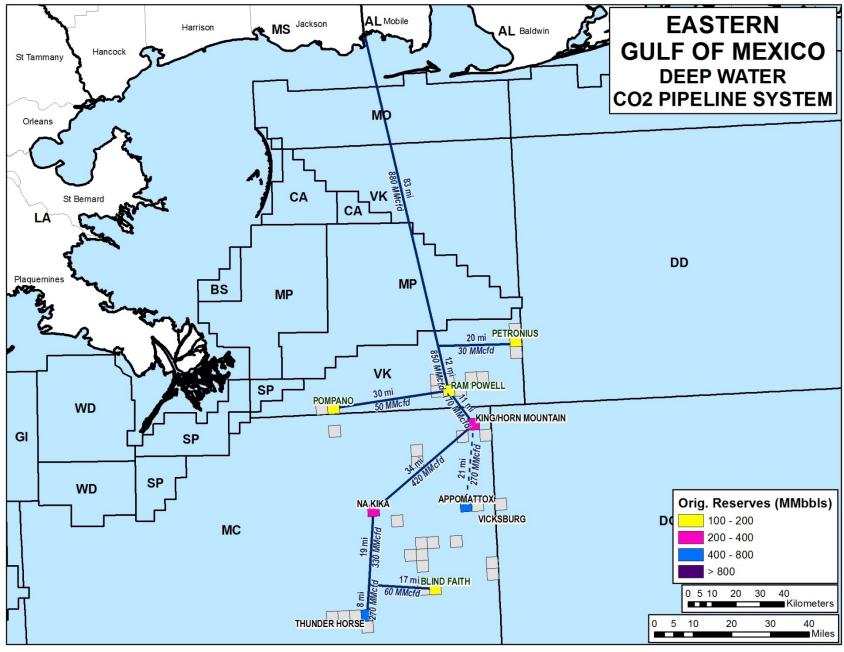
Eastern GOM Shallow Water CO₂ Pipeline System

Pipeline Segment	CO2 (MMcfd)	Length (mi)	Diameter (in)	Pipeline (in-mi)	Water Depth (ft)	Pipeline Costs (\$MM)	End Field	
1	420	71	20	1,420	43		MP41	
2	220	8	16	128	220		MP61/MP73	
3	190	9	16	144	209		MP299	
4	70	6	10	60	253		MP311	
5	40	6	8	48	336		SP62	
6	40	7	8	56	213		MP144	
7	40	14	8	112	247		MP306	
8	20	6	6	36	339		MP290	
9	130	20	12	240	295		Χ	
10	100	6	12	72	220		SP61	
11	40	6	8	48	295		SP65	
12	20	10	6	60	354		SP49	
Total				2,424		1,212		

2/2/2017

Eastern GOM Deepwater CO₂ Pipeline System for Utilization and Storage of CO₂


Pipeline System for Delivering CO₂ to Deepwater **Eastern GOM Oil Fields**


We assembled data and then evaluated eight large deepwater GOM Production Complexes, each with original oil reserves of 50 million barrels or more in the Eastern Portion of the Federal waters of the Gulf of Mexico.

We plotted the location of each of the eight Production Complexes, estimated their oil recovery potential, and calculated their CO₂ injection requirements for CO₂-EOR.

Then, we established an offshore pipeline system that would optimally connect these eight Production Complexes (containing 23 large oil fields) with CO₂ supply delivered from an onshore location.

Eastern Deepwater GOM CO₂ Pipeline System

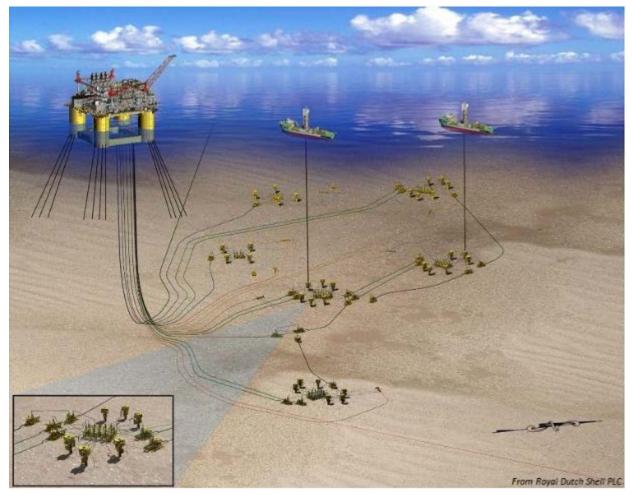
The Eastern Deepwater Gulf of Mexico CO₂ Pipeline System links three deepwater CO₂ Hubs: (1) King/Horn Mt. CO₂ Hub (including the King/Horn Mt., Petronius, Pompano and Ram-Powell Production Complexes); (2) Thunder Horse CO₂ Hub (including the Thunder Horse, Blind Faith and NaKita Production Complexes); and (3) the future Appomattox CO₂ Hub and Production Complex.

The King/Horn Mt., Thunder Horse and Appomattox CO_2 Hubs offer the potential for: (1) 1,280 million barrels of CO_2 -EOR based oil recovery; (2) 12,840 Bcf (679 MMmt) of CO_2 use and storage; and (3) CO_2 requirements of 880 MMcfd (17 MMmt/yr) of CO_2 (for 40 years).

Eastern GOM Deepwater CO₂ Pipeline System

CO ₂ Hubs	No. of Fields	CO ₂ -EOR Oil Recovery	Total Demand	_	CO ₂ Flow Requirements			
	(#)	(MMB)	(Bcf)	(MMmt)	(MMcfd)	(MMmt/yr)		
King/Horn Mt.	9	280	2,820	149	190	3.7		
Thunder Horse	12	600	6,030	319	410	8.0		
Appomattox	2	400	3,990	211	280	5.3		
Total	23	1,280	12,840	679	880	17.0		

JAF2017_007.XLS



Oil Recovery and CO₂ Requirements for Eastern Deepwater **GOM Production Complexes and CO₂ Hubs**

PRODUCTION COMPLEXES	Water Depth	Origi	inal Rese	rves	_	4 Ann oducti			ative Prod rough 20		Reserves		Resource In-Place		ce CO2 Parameters			Sands	Sub-Sea Depth	
AND CO2 HUBS		Oil	Gas	BOE	Oil	Gas	BOE	Oil	Gas	BOE	Oil	Gas	BOE	Oil		Oil Rec.	CO2	Flow		•
	(feet)	(MMbbl)	(Bcf)	(MMbbl)	(MMbbl)	(Bcf)	(MMbbl)	(MMbbl)	(Bcf)	(MMbbl)	(MMbbl)	(Bcf)	(MMbbl)	(MMbbl)	(Bcf)	MMbbl	Bcf	MMcf/d	#	(feet)
KING/HORN MOUNTAIN	4,597	330	643	444	14	15	16	268	539	364	62	104	81	771	882	116	1,157	79	11	11,063
PETRONIUS	2,739	160	198	195	4	9	5	151	178	182	9	21	13	310	216	47	466	32	8	10,665
POMPANO	1,731	156	280	206	1	6	2	140	263	187	16	17	19	440	557	66	661	45	14	9,176
RAM POWELL	3,238	99	897	259	2	6	3	95	881	252	4	16	7	326	1,393	49	489	33	7	12,096
KING/HORN MTN. CO2 HUB		744	2,017	1,103	20	36	26	654	1,861	985	91	157	119	1,848	3,048	277	2,772	190	40	
BLIND FAITH	6,952	127	98	144	3	3	4	68	53	78	59	46	67	599	151	90	899	62	6	22,371
NA KIKA	6,590	345	989	521	27	52	36	271	833	419	74	156	102	851	1,641	128	1,276	87	19	14,543
THUNDER HORSE	5,873	496	440	575	30	26	34	274	245	318	222	195	257	2,573	677	386	3,859	264	23	21,381
THUNDER HORSE CO2 HUB		968	1,527	1,240	60	80	74	613	1,131	815	355	397	425	4,023	2,469	603	6,035	413	48	
APPOMATTOX CO2 HUB	7,395	797	1,541	1,063	0	0	0	0	0	0	797	1,541	1,063	2,657	2,371	399	3,985	273		
KING/HORN MT./ APPOMATTOX/ THUNDER HORSE CO2 HUB 2/3/2017		2,510	5,086	3,406	80	115	101	1,267	2,991	1,799	1,243	2,095	1,607	8,528	7,888	1,279	12,792	876	88	

Appomattox CO₂ Hub

Source: OGJ On-Line, 07/01/2015

The Appomattox deepwater semisubmersible production platform will be located in 7,200 feet of water, 80 miles south of Mobile, Alabama. It will contain six drill centers, 15 producing sub-sea wells and five water injection wells.

The production platform and associated oil fields (Appomattox and Vicksburg) are scheduled to be placed on-stream in 2020.

Eastern GOM Deepwater CO₂ Pipeline **Investment Costs**

Our prefeasibility estimate of installing the Eastern Deepwater CO₂ Pipeline System is about \$2.74 billion. This estimate is based on 1,992 inchmiles in shallow water with costs of \$500,000 per inch-mile and 2,496 inchmiles in deepwater with costs of \$700,000 per inch-mile.

Eastern GOM Deepwater CO₂ Pipeline System

Pipeline Segment	CO2 (MMcfd)	Length (mi)	Diameter (in)	Pipeline (in-mi)	Water Depth (ft)	Pipeline Costs (\$MM)	End Field
1	880	83	24	1,992	984		Χ
2	30	20	6	120	1,795		VK786
3	850	12	24	288	3,238		VK956
4	50	30	8	240	1,436		VK990
5	770	11	24	264	5,285		MC84
6	420	34	20	680	5,741		MC383
7	330	19	16	304	5,576		Χ
8	60	17	8	136	6,952		MC696
9	270	8	16	128	6,077		MC778
10	270	21	16	336	7,333		MC391
Total				4,488		2,743	

Summary of Findings

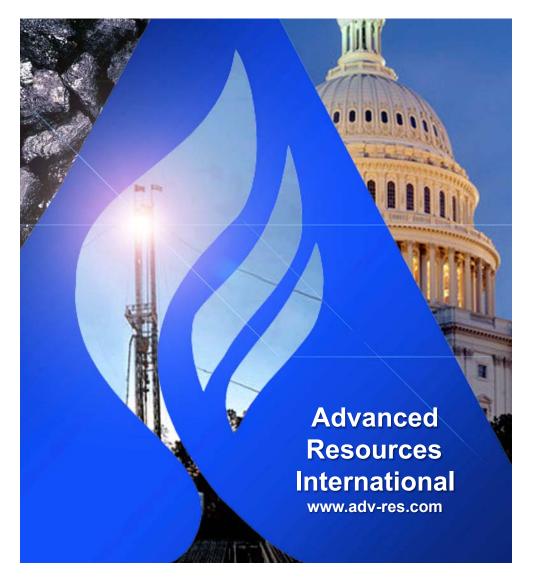
The prefeasibility study of the Eastern Gulf of Mexico CO₂ Pipeline System provides the following findings:

1. Time Urgency for the CO₂ Pipeline System. The majority of the 12 large shallow water Eastern Gulf of Mexico oil fields, as well as several of the deepwater fields (Ram-Powell, Pompano and Petronius), are close to abandonment.

Once these fields are abandoned and their platforms removed, the feasibility of conducting CO₂-EOR and storing CO₂ in the offshore becomes much more challenging and costly.

Summary of Findings (Cont'd)

- 2. The Eastern GOM Shallow Water CO₂ Pipeline System. The \$1.21 billion Eastern GOM shallow water CO₂ pipeline systems would facilitate implementation of CO₂-EOR and CO₂ storage in 12 large oil fields.
 - Potential oil recovery of 610 million barrels,
 - CO₂ demand and storage of 6,110 Bcf (323 million metric tons), and
 - CO₂ delivery (and storage) of 0.42 Bcf per day, equal to 8.1 million metric tons per year, over a 40 year time period.
- **3. The Eastern GOM Deepwater CO₂ Pipeline System**. The \$2.74 billion Eastern GOM deepwater CO₂ pipeline systems would facilitate implementation of CO₂-EOR and CO₂ storage in nine large GOM Production Complexes containing 23 oil fields.
 - Potential oil recovery of 1,280 million barrels,
 - CO₂ demand and storage of 12,280 Bcf (670 million metric tons), and
 - CO₂ delivery (and storage) of 0.88 Bcf per day, equal to 17 million metric tons per year, over a 40 year time period.



Summary of Findings (Cont'd)

4. Benefits of Establishing CO₂ Utilization, Storage and Pipeline Systems for the Eastern Gulf of Mexico. With oil recovery of 1.89 billion barrels, an oil price of \$72 per barrel (EIA AEO 2017 projected oil price for Year 2020), and a combined shallow and deepwater royalty rate of 18.1%, the Federal Government would receive about \$25 billion dollars of royalty revenues from the oil produced using the GOM CO₂ pipeline systems.

Higher oil prices, as projected by EIA for the post 2020 time period, would appreciably increase the royalty revenues to the Federal Government.

Office Locations Washington, DC 4501 Fairfax Drive, Suite 910 Arlington, VA 22203 Phone: (703) 528-8420

Houston, TX 11931 Wickchester Ln., Suite 200 Houston, TX 77043-4574 Phone: (281) 558-9200

Knoxville, TN 1210 Kenesaw Ave. Suite 1210A Knoxville, TN 37919-7736

